风影二:数学危机与数学的发展(二)

来源:百度文库 编辑:九乡新闻网 时间:2024/07/08 17:53:24
 1928年希尔伯特提出四个问题:

1、分析的无矛盾性。1924年阿克曼和1927年冯·诺依曼的工作使希尔伯特相信只要一些纯算术的初等引理即可证明。1930年夏天,哥德尔开始研究这个问题,他不理解希尔伯特为什么要直接证明分析的无矛盾性。哥德尔认为应该把困难分解:用有限主义的算术证明算术的无矛盾性,再用算术的无矛盾性证明分析的无矛盾性,哥德尔由此出发去证明算术的无矛盾性而得出不完全性定理。

2、更高级数学的无矛盾性,特别是选择公理的无矛盾性。这个问题后来被哥德尔在1938年以相对的方式解决。

3、算术及分析形式系统的完全性。这个问题在1930年秋天哥尼斯堡的会议上,哥德尔已经提出了一个否定的解决,这个问题的否定成为数理逻辑发展的转折点。

4、一阶谓词逻辑的完全性。这个问题已被哥德尔在1930年完全解决。

这样一来,哥德尔的工作把希尔伯特的方向扭转,使数理逻辑走上全新的道路。

3、1930年哥德尔的两项主要贡献

1、完全性定理:哥德尔的学位论文《逻辑函数演算的公理的完全性》解决了一阶谓词演算的完全性问题。罗素与怀德海建立了逻辑演算的公理系统的无矛盾性及完全性(也许还包括不那么重要的独立性)。所谓完全性就是,每一个真的逻辑数学命题都可以由这个公理系统导出,也就是可证明。

命题演算的完全性已由美国数学家波斯特在1921年给出证明,而一阶谓词演算的完全性—直到1929年才由哥德尔给出证明。但是哥德尔认为,斯柯仑在1922年的文章中已隐含证明了命题演算的完全性,但是他没有陈述这个结果,可能是他本人并没有意识到这一点。

2、哥德尔的不完全性定理:这是数理逻辑最重大的成就之一,是数理逻辑发展的一个里程碑和转折点。哥德尔在研究过程中直接考虑悖论及解决悖论的方法,从而把第三次数学危机引导至另外一个方向上。

哥德尔证明不完全性定理是从考虑数学分析的协调性问题开始的。1930年秋在哥尼斯堡会议上,他宣布了第一不完全性定理:一个包括初等数论的形式系统,如果是协调的,那就是不完全的。不久之后他又宣布:如果初等算术系统是协调的,则协调性在算术系统内不可证明。

哥德尔的证明使用了“算术化”的方法。哥德尔说:“一个系统的公式……从外观上看是原始符号的有穷序列……。不难严格地陈述,哪些原始符号的序列是合适公式,哪些不是;类似地,从形式观点看来,证明也只不过是(具有某种确定性质的)一串公式的有穷序列”。因此,研究一个形式系统实际上就是研究可数个对象的集合。我们给每个对象配上一个数,这种把每一个对象配上一个数的方法称为“哥德尔配数法”。哥德尔通过这些数反过来看原来形式系统的性质。

哥德尔研究了46种函数和谓词,哥德尔证明了他的前45个函数和谓词都是原始递归的。但第46个谓词为“X是一个可证公式的哥德尔数”。在对哥德尔配数的系统中,可以得到一个公式,它相当于:我是不可证的。所以这个句子是不可证的且是真的。所以系统中存在真语句而又不可证,也就是系统不完全。

哥德尔的论文在1931年发表之后,立即引起逻辑学家的莫大兴趣。它开始虽然使人们感到惊异不解,不久即得到广泛承认,并且产生巨大的影响:

哥德尔的证明对希尔伯特原来的计划是一个巨大的打击,因此把整个数学形式化的打算是注定要失败的,因而逻辑主义和形式主义的原则是不能贯彻到底的;“希尔伯特计划”中证明论的有限主义观点必须修正,从而使证明论的要求稍稍放宽。1936年甘岑在容许超穷归纳的条件下证明了算术的无矛盾性,而倡导有限构造主义的直觉主义也不能解决问题;哥德尔的工具递归函数促进了递归函数论的系统研究,同时推动了不可判定问题的研究,开始出现递归论的新分支。

哥德尔不完全定理的证明结束了关于数学基础的争论不休的时期,数学基础的危机不那么突出表现出来。数理逻辑形成了一个带有强技巧性的独立学科,而绝大部分数学家仍然把自己的研究建立在朴素集合论或ZF公理集合论的基础上。 

尽管集合论中存在矛盾,但这些矛盾大部分均可回避。研究这些矛盾,特别是集合论的矛盾变成数理逻辑学家的事业。另外一方面,直觉主义和构造主义数学虽然也有发展,但终究是一小部分,半个世纪以来,在数学中始终不占统治地位。因为矛盾也好、危机也好,根源在于无穷,但是数学中毕竟少不了无穷。归根结蒂,数学终究是研究无穷的科学。
第五章:数理逻辑的大发展

1930年以后,数学逻辑开始成为一个专门学科,得到了蓬勃发展。哥德尔的两个定理证明之后,希尔伯特的有限主义纲领行不通,证明论出现新的情况,主要有两方面:通过放宽有限主义的限制来证明算术无矛盾性以及把证明形式化、标准化,这些主要是在三十年代完成。同时哥德尔引进递归函数,发展成递归论的新分支,开始研究判定问题。而哥德尔本人转向公理集合论的研究,从此出现公理集合论的黄金时代。五十年代模型论应运而生,它与数学有着密切联系,并逐步产生积极的作用。


1、证明论

证明论又称元数学,它研究数学的最基本活动—证明的合理性问题。研究这类数学基础的问题原来一直是哲学家的事,后来才成为数学家的事。这个转变发生在1893年弗雷格发表《算术基础规则》之时,后来希尔伯特和他的许多合作者使这种思想发展成一门学科—元数学,目的是用数学方法来研究整个数学理论。

要使数学理论成为一个合适的研究对象,就必须使之形式化。自从希尔伯特和阿克曼所著《理论逻辑纲要》第一版在1928年出版以来,在实践中用得最多的是具有等式的一阶谓词演算(以及高阶谓词演算)。许多理论可以用一阶理论来表述,它比较简单方便,具有多种形式。

从基础的观点来看,有两个理论最为重要,因而研究也最多。这两个理论就是形式化的皮亚诺算术理论与形式化的集合论。因为大多数观代数学理论都可以在这两个理论范围内发展,所以这两个理论的合理性如果得到证实,也就是向数学的可靠性迈进了一大步。“希尔伯特计划”无非就是要找到一个有限的证明步骤来证明算术的无矛盾性。

这里“有限”的意义是由法国年轻数学家厄布朗明确提出的,他认为下列条件必须满足:必须只讨论确定的有限数目的对象及函数;这些对象及函数要能确定它们的真值产生协调一致的计算结果;一个对象如不指出如何构造它就不能肯定其存在;必须永远不考虑一个无穷集体中所有对象的集合;一个定理对于一组对象都成立的意思是,对于每个特殊的对象,可以重复所讲的普遍论证,而这普遍论证只能看成是结果特殊论证的原型。

数学理论的无矛盾性有了这种有限的、可构造性的论证之后,任何人都可以放心了。希尔伯特计划提出后,几组数学家分别为实现它而努力:一组是希尔伯特及贝耐斯,以及阿克曼关于把数学理论形式化的研究,一组是冯·诺依曼关于算术无矛盾性的初步研究及哥德尔的不完全性定理以及甘岑的最后解决;还有一组是厄布朗及甘岑关于证明的标准形式等的研究。

厄布朗是法国天才的青年数学家,1931年8月在登阿尔卑斯山时遇难,年仅23岁。他对代数数论尤其是数理逻辑进行过重要的研究工作,1929年他在博士论文《证明论研究》中提出他的基本定理。从某种意义上来讲,这个定理是想把谓词演算归结为命题演算。由于前一理论是不可判定的,而后一理论是可判定的,因此这种归结不可能是完全的。

但是,由于厄布朗局限于希尔伯特有限主义立场,他应用的证明方法比较绕弯子。而且在1963年发现,他的证明中有漏洞,他的错误很快就得到了弥补。厄布朗定理可以便我们在证明中摆脱三段论法。他的许多结果,后来也为甘岑独立地得出。

甘岑的自然演绎系统是把数学中的证明加以形式化的结果。他由此得出所谓“主定理”,即任何纯粹逻辑的证明,都可以表示成为某种正规形式,虽然正规形式不一定是唯一的。为了证明这个主定理,他又引进了所谓的式列(Sequenz)演算。


在普通的数学证明中,最常用则是三段论法,即如果A→B,且若A成立,则B成立。其实这就是甘岑推论图中的“断”。但是甘岑的主定理就是从任何证明图中可以消除掉所有的“断”。也就是:如果在一个证明中用到三段论法,那么定理表明,它也可以化成为不用三段论法的证明,也得到同样的结论。

这个定理乍一看来似乎不可理解,其实正如甘岑所说,一个证明图中有三段论法实际上是“绕了弯子”,而不用三段论法是走直路。这种没有三段论法的证明图称为“正规形式”,利用这没有三段论法的证明图称为“正规形式”。利用这个主定理很容易得出许多重要结果,其中之一就是极为简单地证明“一阶谓词演算是无矛盾的”,而且能够推出许多无矛盾性的结果。后来还可以用来证明哥德尔的完全性及不完全性定理,当然,最重要的事还是要证明算术的无矛盾性。

希尔伯特引进证明论的目标是证明整个数学的无矛盾性,其中最重要的是集合论的无矛盾性(至少ZF系统无矛盾)、数学分析的无矛盾性,最基本的当然是算术的无矛盾性。哥德尔的不完全性定理说明,用有限的办法这个目标是达不到的。由于哥德尔不完全定理的冲击,希尔伯特计划需要修改。

有限主义行不通就要用非有限的超穷步骤。1935年,甘岑用超穷归纳法证明自然数算术形式系统的无矛盾性。其后几年,他和其他人又给出了其他的证明。这种放宽了的希尔伯特计划在第二次世界大战之后发展成为证明论的分支,这些证明也推广到分支类型论及其他理论。

甘岑在第二次大战行将结束时去世,他的结果代表当时证明论的最高成就,希尔伯特和贝纳斯的《数学基础》第二卷中总结了他的工作,但是证明论远远未能完成它的最初目标。战后随着模型论和递归论乃至六十年代以来公理集合论的发展,证明论一直进展不大。

五十年代中,日本数学家竹内外史等人开始对于实数理论(或数学分析)的无矛盾性进行探索。因为实数一开始就同有理数的无穷集和有关,描述它的语言用一阶谓词演算就不够了,所以第一步就要先把甘岑的工作推广到高阶谓词演算中去。

1967年,日本年轻数学家高桥元男用非构造的方法证明,单纯类型论中也可以消去三段论法。由此可以推出数学分析子系统的无矛盾性。但是,由于证明不是构造的,数学分析的无矛盾性至今仍然有待解决。

厄布朗及甘岑的结果虽然不可能完成希尔伯特计划的最初目标,但是由于其有限性、可构造性的特点,现在已广泛地应用于机械化证明,成为这门学科的理论基础。

证明论的方法对于数理逻辑本身有很大的推动,特别是得出新的不可判定命题。最近,英国年轻数学家巴黎斯等人有了一项惊人的发现。他们发现了一个在皮亚诺算术中既不能证明也不能否证的纯粹组合问题,这不仅给哥德尔不完全性定理一个具体的实例,而且使人怀疑要解决许多至今尚未解决的数论难题可能都是白费力气。这无疑开辟了证明论一个完全新的方向。

2、递归论

递归论讨论的是从形式上刻划一个运算或一个进程的“能行”性这种直观的观念,也就是从原则上讲,它们能机械地进行而产生一个确定的结果。“能行”的这个概念含有可具体实现的、有效的、有实效的等等意思。法国数学家保莱尔首先在1898年他的函数论教科书中引进了这个词,他把数学的对象局限于能行的对象,这种主张实际上就是“法国经验主义”。因为函数论主要讨论集合、函数、积分等等,从这种观点产生出描述集合论、拜尔函数等概念。

递归论中所讨论的函数是比较简单的。它讨论有效可计算的函数,也就是递归函数。递归函数在历史上曾从不同角度提出来,后来证明它们都是等价的。

1931年秋天,丘奇在普林斯顿开了一门逻辑课,克林和罗塞尔当时作为学生记了笔记。丘奇在讲课中引进了他的系统,并且在其中定义自然数。这就很自然引起一个问题,在丘奇系统中如何发展一个自然数理论。于是克林开始进行研究,结果克林和丘奇得到一类可计算的函数,他们称之为A可定义函数。


1934年春天,哥德尔在普林斯顿做了一系列讲演(克林和罗塞尔记了笔记)。在讲演中,哥德尔引进了另外一套可以精确定义的可计算函数类,他称为一般递归函数。据他讲,他是受了厄布朗的启发得到的。

这时自然出现了一个问题。一般递归函数类是否包括所有能行可计算的函数,它是否与克林与丘奇研究的 A可定义函数类重合。1934年春末,丘奇和哥德尔讨论一般递归函数问题,结果丘奇明确提出他的“论点”,所有直觉上可看成能行可计算函数都是 λ可定义函数,于是丘奇花了好几个月反复思考。当时克林表示怀疑,他认为这论点不太可能是对的,他想如果从A可定义函数类用对角化方法可以得出另外一个能行可计算函数,那么它就不是A可定义的。但他又想到这事行不通。不久之后,丘奇和克林在1936年分别发表论文,证明A可定义函数类正好就是一般递归函数类。有了这个有力的证据,丘奇于是公开发表他的“论点”。

也是在1936年,英国年轻数学家图林发表了另外一篇重要文章,这标志着所谓图林机的产生。在这篇文章中,图林也定义了一类可计算函数,也就是用图林机可以计算的函数。同时,他也提出他的一个论点:“能行可计算的函数”与“用图林机可计算的函数”是一回事。1937年图林证明了用图林机可计算的函数类与可定义函数类是一致的,当然,也就和一般递归函数类相重合。这样一来,丘奇的论点与图林的论点就是一回事。当时许多人对于丘奇的论点表示怀疑,由于图林的思想表述得如此清楚,从而消除了许多人的疑虑,哥德尔就是其中一位。从这时起大家对于丘奇—图林论点一般都抱支持的态度了。

与图林同时,美国数学家波斯特也发表了一篇文章,类似于图林的可计算函数,他的文章过于简短,一直到1943年波斯特才发表了第四个表述,结果证明他的与别人的也都一样。

递归的概念并不难理解,它就是由前面的结果可以递推得到后面的结果。哥德尔等人引进的实际上是一般递归函数,一股递归函数都可以由原始递归函数算出来。

另一个复杂一些的概念称为递归集合S,它的定义是存在一种能行的办法来判断任何正整数n是否属于S。正数数集合是递归的当且仅当它与它在N中的补集都是递归可枚举的。任何无穷递归可枚举集都包含一个无穷递归集。但是,存在正整数的递归可枚举集而不是递归集。

于是波斯特提出问题:是否存在两个递归可按举但是非递归的集合,使得第一个集合相对于第二个是递归的,但第二个相对于第一个却不是递归的。一直到十二年后的1956年,苏联人穆其尼克及美国人弗里德伯格才独立地肯定地解决了这个问题。

苏联数学家马尔科夫在1947年发表《算法论》,首先明确提出算法的概念。但是它同以前定义的递归函数及可计算函数的计算过程都是等价的。这几个定义表面上很不相同,并有着十分不同的逻辑出发点,却全都证明是等价的。这件事看来决非巧合。它表明:所有这些定义都是同一个概念,而且这个概念是自然的、基本的、有用的。这就是“算法”概念的精确的数学定义。大家都接受了这个定义之后,判定问题从我们平时直观的概念也上升为精确的数学概念,判定问题也成为一门数理逻辑的重要分支了。从这时起,判定问题有突飞猛进的发展。

判定问题有了精确的数学表述之后,立即在数学基础乃至整个数学中产生了巨大的影响。因为这时一些不可判定命题的出现,标志着人们在数学历史上第一次认识到:有一些问题是不可能找到算法解的。在过去,人们一直模模糊糊地觉得,任何一个精确表述的数学问题总可以通过有限步骤来判定它是对还是错,是有解还是没有解。找到不可判定问题再一次说明用有限过程对付无穷的局限性,它从另外一个角度反映了数学的内在固有矛盾。

怎样得到这些结果的呢?丘奇的论点发表之后,不难看出存在不可计算的函数,也就是非一般递归的函数。因为所有可能不同的算法共有可数无穷多(粗浅来讲,算法都是用有限多个字来描述的),可是所有数论函数的集合却是不可数的。 

不过,头一个明显的不可判定的结果是1936年丘奇得到的。他首先得到与λ可定义性有关的不可判定结果。然后,他把这个结果应用到形式系统的判定问题上,特别他证明,形式化的一阶数论N是不可判定的。也是在1936年,丘奇证明纯粹的谓词演算也是不可判定的。当时大家的反应是:这种不完全性的范围到底有多广?

甚至于象丘奇这样的数学家,也想找到一条出路能避开哥德尔的结果。比如说,可以采用伺哥德尔所用的系统完全不同的其他的特殊系统。一旦算法的精确定义和丘奇论点出现之后,大家就认识到躲不过哥德尔不完全性定理的影响,可计算性和不完全性这两个概念是紧密联系在一起的。

实际上克林在1936年就证明了(作为丘奇论点的应用):甚至在能够能行地认出公理和证明的形式系统中,哥德尔的定理仍然成立。消去量词方法对许多理论行不通。一般的判定问题是试图找出一个能行的步骤,通过这个步骤可以决定什么东西具有某种指定的元数学特征。

在纯粹逻辑演算的元理论中,有最明显的一类判定问题:对于给定的演算和给定类的公式,求出一个步骤,能够在有限多步内判定这类的任何特殊公式是否可以形式地推导出来。有些情形、问题已经得到肯定的解决,在另外一些情形,答案是否定的,可以证明不存在这样一个步骤。这种否定的证明,特别对于数学理论,很大程度上依赖于递归论。

最早明确提出的数学判定问题是希尔伯特第十问题。他在1900年国际数学家大会上提出了著名的二十三个问题,其中第十个问题是:给定一个有任意多未知数的、系数为有理整数的丢番图方程,设计一个步骤,通过它可以经有限步运算判定该方程是否有有理整数解。这个到1970年才被否定解决的问题不仅解决了一个重大问题,而且解决问题过程中所得到的工具和结果对数理逻辑和数学发展有着极大影响,比如表示素数的多项式,尤其与整个数理逻辑有关的是得出了一个更确切的哥德尔不完全性定理。

现在我们来看希尔伯特第十问题,为了清楚起见,我们考虑多项式方程,看看一般的多项式丢番图方程的次数和未定元的数目是否可以降低。

1938年斯科兰姆证明,任何丢番图方程的次数可约化成次数小于等于4的方程;1974年马蒂亚谢维奇和罗滨逊证明未定元的数目可约化成小于等于3。对于齐次方程,阿德勒在1971年证明,任何齐次方程可以能行地约化为二次齐次方程组,从而等价于一个四次齐次方程。对于一次方程早就有具体方法解丢番图方程了。对于任意多未定元的二次方程,1972年西格尔也找到一个算法。四次方程不能判定,三次方程尚不知道。

解决丢番图方程解是否存在的判定问题的方法是引进丢番图集。我们把丢番图方程的变元分成两有一组解。每个丢番图集合是递归可枚举集。1970年,苏联大学生马蒂亚谢维奇证明了每个递归可枚举集也是丢番图集合。这样一来,由于存在不可判定的递归可枚举集,所以存在一些特殊的丢番图方程,使得对是否有解的判定问题不可解。当然对一般丢番图方程的判定问题就更不可解了。

另一个判定问题是半群和群论中字的问题,半解问题是挪威数学家图埃在1907年首先提出来的。问题是对于一个半群,如果给定它的有限多生成元和有限多关系,那么能否找到一个方法来判定任何一个特殊的字是否等于单位元素。1947年,波斯特否定地解决了这个问题。

群论中字的问题更为重要,它是在1911年由德恩首先研究的,一直到1955年才由苏联数学家诺维科夫否定解决。这些结果给数学家指明了新的方向:不要妄图去解决一大类问题。不过对于更窄的一类的对象比如一类特殊的群,群的字问题是可解的。

3、模型论

模型论是数理逻辑的一个分支,讨论形式语言与其解释或者模型之间的关系。如语言是一阶谓词逻辑,则这种模型论就称为“古典模型论”。最简单的模型是数学中的一些结构,例如 5阶循环群,有理数域,以及所有按照包含关系历形成的偏序结构由整数构成的集合等等。在数学里我们直接研究这类模型,而不管形式语言。这个理论可以说是泛代数(当然也包含通常代数中的群论、环论、域论等等),它们研究同态、同构、子结构、直积等等。可是关于这些模型的性质,都要表示成为语言。反过来,一个语句可以真也可以假,看你是说哪一个模型。

这样看来,模型论和代数学是有区别的,有人把模型论看成是逻辑加上泛代数,这也是十分形象的。模型论一定要明显地涉及语句,并且以语句为出发点,这是它同一般代数学有区别的地方。另外模型论的语言是形式语言,它与模型的关系是语法和语义的关系。对于形式语言,我们只是按照一定的规则(文法规则)去造出一些语句,至于这些语句含义如何、是真是假,就不是语法所能管得了的。

语法只考虑形式的结构,比如构成语句的符号是哪些,符号之间的关系如何(谁在谁的前面而不能在后面)等等,而语义则提供解释或者意义,只有意义才能确认语句的真假(除了重言式或恒真语句或同语反复之外)。因此可以说,模型论是研究形式语言的语法和语义之间关系的学科。
第五章:数理逻辑的大发展

在数学中,我们对模型还不是很陌生,在非欧几何中就是靠引进模型才论证了非欧几何公理系统是不矛盾的。但一直到195年左右,模型论才正式成为一门新学科。主要标志就是1949年亨肯发表的完全性定理的新证明,以及1950年国际数学家大会上塔尔斯基与罗滨逊的的报告,以及1951年罗滨逊《代数的元数学》的发表。

自此之后,模型论大致可分为两条路线,一条是美国西海岸的斯科兰姆一塔尔斯基路线,他们从四十年代起就由数论、分析、集合论的问题所推动,强调研究一阶逻辑所有公式的集合模型。另一条是美国东海岸的罗滨逊路线,他们的问题由抽象代表的问题所推动,它强调无量词公式集与存在公式集。关于两块量词的理论很多,它们有许多应用。罗滨逊主要用于域论,前苏联马力茨夫等人主要用于群论。

属于纯粹模型论主题的最早的定理有两个,一个是罗文汉姆的定理。他在1915年证明每一组有限多公理如果有模型的话,则它也有一个可数模型。把这个定理推广到有可数个公理的情况。另一个定理是紧性定理。

三十年代,哥德尔对可数语言证明紧性定理,1936年苏联马力茨夫推广到不可数语言。紧性定理在代数学方面有许多应用。

这两个定理都肯定某种模型的存在性,特别是罗文汉姆—斯科兰姆定理及紧性定理指出有想不到的特别大的模型存在。最明显的就是自然数集合的皮亚诺公理(其中归纳公理加以改变),不仅有通常自然集N为其标准模型(即包括可数多个元素),还有包括不可数多个元素的模型,这就是所谓非标准算术模型。第一个非标准算术模型是由斯科兰姆在1934年首先造出的。这两个定理的证明都依赖于造模型的方法。

模型论中常用的构造模型方法与工具有:初等链方法、图式、紧性定理、下行罗文海姆—斯科兰姆定理、省略类型定理、力迫法、超积、齐性集合等8种,这些方法都是相当专门的。

图式方法是亨金及罗滨逊首创的,它有许多用处,不仅能证明紧性定理、罗文海姆—斯科兰姆定理、哥德尔完全性定理等等,而且可以得出许多新定理。

初等链是塔尔斯基及沃特在1957年提出的。超积是最常用的构造模型的方法,超积和超幂的用处表现在同构定理上。超幂的另一个很大的用处是构造非标准分析的模型。

对于数学理论最重要的事是公理化。在模型论中,公理数目可以有限多,称为有限可公理化的理论。这类理论有;群、交换群、环、整域、域、有序域、全序集、格、布尔代数、贝纳斯—哥德尔集合论等等。许多重要理论是不能有限公理化的,其中一部分是递归可公理化的。如可分群、无挠群、特征0的域、代数封闭域、实封闭域、有限域、尤其重要的是皮亚诺算术和ZF集合论,而有限群论甚至连递归可公理化都不行。

一个理论是递归可公理化的充分必要条件是:它的所有推论集合是递归可枚举的。通常它不一定是递归的,如果是递归的,则称为可判定的。可以证明,每个完全、递归可公理化理论是可判定的。因此利用模型论的有力工具可以得出判定理论的一些结果,如早在1948年塔尔斯基等人证明,实闭域理论是完全的,因此是可判定的。


早在十九世纪,数学家利用造模型的方法来肯定非欧几何的真实性,他们造过许多模型,但这些模型本质上没有区别,也就是“同构”。在二十世纪初,数学家一般认为,一个理论的模型都是同构的,如自然数理论就是皮亚诺公理所刻划的一种。

但是这种想法很快就由于自然数非标准模型的存在而被打破,所以人们又在模型论当中引进重要的概念—范畴性:一个理论或一组公式如果其所有模型均同构,它就称为范畴的。实际上,这对于形式系统(或公理系统)是仅次于协调性(无矛盾性)、完全性、独立性之后的第四个重要要求。但是这个要求实在太强了,实际上,只要一个理论有一个无穷模型,那么它就不是范畴的,所以我们把范畴性的要求降低。

模型论给数学带来许多新结果,我们大致可以分成三大部分:在代数方面的应用主要是在群论和域论方面;在分析方面的应用主要是非标准分析;在拓朴学、代数几何学方面的应用主要是拓扑斯理论。

模型论在代数学中最早的应用是量词的消去,早在三十年代,就由此得到了整数加法群的判定步骤,塔尔斯基得到实数的可定义集和实数域的判定步骤。

1965年以后,数理逻辑的发展逐步影响到数学本身,因而重新引起数学家们的注意,特别是集合论与模型论的结果不断冲击数学本身。模型论在解决代数问题方面显示巨大威力,特别是艾柯斯及柯辰解决了著名的阿廷猜想,这个问题曾使代数学家为难了几十年。

非标准分析是罗滨逊在1960年创造的。1961年1月,在美国数学大会上,罗滨逊宣布了他的非标准分析,其实这就是逻辑学家所谓的实数的非标准模型。在这篇报告中,他总结了新方法的所有重要方面,因此无可争辩地成为这个新领域的独一无二的创造者。他指出,实数系统是全序域,具有阿基米德性质,也就是任何一个正实数经过有限次自己加自己之后可以超过任何一个实数。但是非标准实数一般并不满足这个条件,比如说一个无穷小量的一千倍,一万倍、一亿倍甚至更多,也大不过 1,这个性质称为非阿基米德性质。

最近,非标准分析在分析、微分几何学、代数几何学、拓扑学有一系列的应用,使数学家对非标准分析也不得不另眼相看了,特别是非标准拓扑和非标推测度论近来更是有重要的突破。

非标难测度论已经得出许多新的“标准”结果,如关于测度的扩张、位势理论、布朗运动理论、随机微分方程、最优控制理论,甚至运用到数理经济学及高分子物理化学当中。其中关键来自1975年洛布的工作。他从非标准测度空间能造出丰富的标准测度空间,使得非标准分析真正能对标准数学作出自己的贡献。

拓扑斯是统—现代数学的最新基础,它反映了数理逻辑与范演论的结合。范畴论大约在六十年代初由同调代数学脱胎而出,而同调代数则在四十年代末到六十年代初由代数拓扑学发展而来。代数拓扑学则是用群、环、域、模等代数结构来刻化几何图形的拓扑结构。同调代数学则用代数结构来刻化代数结构,比如说一组群与另一组的对应关系。把这个组发展到集合或其它任何结构,研究范踌与范踌之间的关系就是范畴论。

我们可以考虑几何的范踌和范踌的范踌。1963年出现了层的范畴,这就是拓扑斯。托普斯使范畴方法迅速推广到其他数学分支中去。1970年,劳威尔等人引进一种特殊的范畴—初等拓扑斯。几年之后,证明了一个重要结果,一个初等拓扑斯正好是高阶直觉主义集合论的模型。因此,初等拓扑斯就象集合一样成为数学的基础,而且更接近数学的内容。

4、公理集合论

1930年以后,迎来了公理集合论的黄金时代。对于数学家们来说,策梅罗的公理系统ZF大致够用。他们仍不太关心集合论的细微未节,以及一层一层的无穷大,这些在他们的数学中难得碰到。不过除了九条可靠的ZF公理之外,他们也往往需要选择公理(AC),有时也要考虑连续统假设(CH)。他们希望这两个公理是真的,这样似乎就可以天下太平了。谁知事情越来越麻烦,现在居然找出一大堆玄妙的公理和假设,它们能推出一些我们想要的结果来,同时又出现许多荒唐矛盾的现象。这些现象十分有趣,但是从外行看来实在乱七八糟。这里还是简单归纳介绍一下:


 4.1 选择公理

选择公理是现代数学中最常用的假设,过去许多人曾不自觉地使用。对这个问题引起注意,是因为康托尔在1883年提出任意集合是否都可良序化的问题。希尔伯特也曾把这个问题引入其23问题头一问题的后半部分。1904年,策梅罗提出选择公理,并通过选择公理证明了良序定理。这个公理有极多的等价形式,其中有在代数中常用的造恩引理。这个应用极广、看来正确的选择公理,却可以证明出一些看来荒唐的结果。如1914年的豪斯道夫的分球面定理和U23年的巴拿赫—塔尔斯基悖论。

可是选择公理的用途太大,不能忽视,许多学科的基本定理少不了它:泛函分析中的哈恩—巴拿赫定理(关于巴拿赫空间上的线性泛函的可扩张性);拓扑学的吉洪诺夫定理(关于任意多紧空间的直积为紧);布尔代数的斯通表示定理,每个布尔代数皆同构于集代数;自由群论的尼尔森定理,自由群的子群也是自由的。

其他还有许多定理,如果没有选择公理也不行。

4.2连续统假设

连续统假设的历史最久,它可以说是随着集合论一起产生的。1883年康托尔就提出了这个假设,可数无穷集的基数的后面就是连续统的基。康托尔花了毕生精力去证明,但没有成功。希尔伯特把它列入自己著名的23个问题的头一个。希尔伯特本人也曾经用了许多精力证明它,并且在192~—1926年宣布过证明的大纲,但终究未能成功。这个问题终究悬而未决。

1930年哥德尔完成了他的两大贡献以后,曾说过“现在该轮到集合论了”。他从1935年起就开始研究连续统假设及广义连续统假设。这一次他又出人意料地证明了ZF和GCH是协调一致的,不过当然要假设ZF本身也是协调的,虽然这一点一直没有得到证明。

哥德尔应用可构造性公理证明ZFC和ZFC+GCH的相对无矛盾性,他用可构造集的类L作为ZFC的模型。1963年7月,美国年轻数学家科恩发明了影响极为重大的力迫法,并证明连续统假设的否定命题成立,这样一来CH在ZF中既不能证明也不能否定。

4.3可构成性公理

哥德尔证明选择公理和连续统假设协调性的方法是定义一种类型的集合,叫做可构成集。假如把集合论中集合的概念完全用可构成集合的概念来理解,那么集合论中的一些概念就会有相应的改变。但是有一些概念不会改变,这种概念我们称为绝对的,特别是可构成性这个概念是绝对的。所以“一切集合是可构成的”,这称为可构成性公理。

可构成性的概念非常重要,表现在:1、可构成性公理与ZF的其他公理是协调的;2、可构成性公理蕴涵连续统假设和选择公理;3、如果可测基数存在,则不可构成集合存在,这是斯科特1961年证明的。随后,罗巴通在他1964年的博土论文中证明可测基数的存在,蕴涵整数不可构成集合的存在性,后来他又证明可测基数的存在蕴涵只有可数无穷多个整数的可构成集合。

4.4 马丁公理

马丁公理是1970年由马丁等人提出来的,它与ZFC的其他公理完全不同,不象一个“真”的公理,但是由它可以推出数学上重要的结果。马丁公理是连续统假设的推论,因此可以看成是弱连续统假设。

马丁公理在数学上有一系列的重要应用。特别重要的是,舍拉在1974年证明怀特海猜想在ZFC下是不可判定的。同样,许多拓扑学问题也有类似情况。

4.6 大基数公理

连续统假设及广义连续统假设反映了最理想的大基数产生的方法,也就是一个接一个由幂集的基数产生出来。但是,这种理想的情况现在还无法证明,而与它不同或矛盾的情形也不可能得到否定。因此,这种种特殊大基数的存在性能得到更加特殊的结果,而且对数学本身产生了不可忽视的影响。

虽然这些大基数极为玄乎,可是由它们可以推出许多重要的数学结果。因此我们不得不重视它,而它们的存在性作为公理就是大基数公理。可以料到这些大基数公理同原来的一些公理是矛盾的。比如,可构造公理就蕴涵可测基数不存在。

大基数公理对数学问题的重要性可以由下面问题的解决看出:拓扑学中一个著名的几十年末解决的正规莫尔空间猜想归结为可测基数的存在问题,而象过去局限于ZFC系统的证明是没有希望的。

4.6决定性公理

决定性公理是与描述集合论密切相关的公理,它涉及到自然数列的集合是否能够通过某种方法决定。

决定性公里的基本问题是:什么集合是可决定的?经过许多人的努力,马丁在1975年证明,数学中最常用的保莱尔集合是可决定的。下一个猜想是证明所有解析集合(即二维保莱尔集合的射影集合)是可决定的,但这个猜想与哥德尔的可构成性公理相矛盾。上面讲过,可构成性公理是与ZFC是相容的,因此这个猜想无法在集合论中证明。这样一来,它本身可以成为一个新公理。

比这个公理更加激进的公理是:R的所有子集合都是决定的。这个公理太过激烈了,以致很难为“真”,因为它首先同选择公理有矛盾。不过,由这个决定性公理却能推出一系列有趣的数学事实;其中最突出的是,由它可推出所有实数集合都是勒贝格可测的。这样一来,许多数学成为没有意思的了。因此,数学家还是不太想要这个太强的公理。可是,它带来的一系列问题仍有待解决。
第六章:数学与哲学

从1900年到1930年左右,数学的危机使许多数学家都卷入到一场大辩论当中。他们看到这次危机涉及数学的根本,必须对数学的哲学基础加以严密的考察。在这场大辩论中,原来的不明显的意见分歧扩展成为学派的争论,以罗素为代表的逻辑主义,以布劳威尔为代表的直觉主义,以希尔伯特为代表的形式主义三大学派应运而生。他们在争论过程中尽管言语尖刻,好象势不两立,其实他们各自的观点在争论过程中都吸收了对立面的看法而有很多变化。

1930年,哥德尔不完全性定理的证明暴露了各派的弱点,哲学的争论冷淡了下去。此后各派力量沿着自己的道路发展演化。尽管争论的问题远未解决,但大部分数学家并不太关心哲学问题。近年来数学哲学问题又激起人们的兴趣,因此我们有必要了解一下数学哲学的来龙去脉。

1、逻辑主义

罗素在1903年出版的《数学的原理》中对于数学的本性发表了自己的见解。他说:“纯粹数学是所有形如‘p蕴涵q’的所有命题类,其中p和q都包含数目相同的一个或多个变元的命题,且p和q除了逻辑常项之外,不包含任何常项。所谓逻辑常项是可由下面这些对象定义的概念:蕴涵,一个项与它所属类的关系,如此这般的概念,关系的概念,以及象涉及上述形式一般命题概念的其他概念。除此之外,数学使用一个不是它所考虑的命题组成部分的概念,即真假的概念。”

这种看法是罗素自己最早发表的关于逻辑主义的论点。这种看法在以前也不同程度被戴德金、弗雷格、皮亚诺、怀特海等人表达过。戴德金在1872年出版了《连续性及无理数》一文,在这篇文章中,他把有理数做为已知,进而分析连续性这个概念。为了要彻底解决这个问题,必须考虑有理数乃至自然数产生的问题。他认为应该建立在逻辑基础上,但没有实行。

弗雷格在1884年《算术基础》中认为每个数是一个独立的对象。他认为算术规则是分析判断,因此是先验的。根据这点,算术只是逻辑进一步发展的形式,每个算术定理是一个逻辑规律。把算术应用到自然现象上的解释只是对所观察到的事实的逻辑加工,计算就是推理。数字规律无须实践检验即可应用于外在世界,而在外在世界、空间总体及其内容物,并没有概念、没有数。因此,数字规律实际上不能应用于外在世界,这些规律并不是自然规律。不过它们可以应用于对外在世界中的事物为真的判断上,这些判断即是自然规律。它们反映的不是自然现象之间的关系,而是关于自然现象的判断之间的关系。

早在罗素发现悖论之前,他在写作《数学的原理》时就企图把数学还原为逻辑,由于发现悖论,这个计划遭到了困难。他发现消除悖论的方法之后,又开始具体实现他的计划,这就是他和怀特海合著的《数学原理》。 

既然罗素、怀特海的《数学原理》原来的目的是企图把数学建立在逻辑的基础上,因此,书一开始就提出几个不加定义的概念和一些逻辑的公理,由此推出逻辑规则以及数学定性。

不加定义的概念有基本命题、命题函数、断言、或、否(非);这里讲的命题是指陈述一件事实或描述一种关系的一个语句,如“张三是人”,“苹果是红的”等等,由这些概念可定义逻辑上最重要的概念“蕴涵”。

要想由逻辑推出数学,第一步是推出“数”来,这件事皮亚诺及弗雷格都做了。罗素在消除悖论之后,成功地用“类”来定义1。这个过程极为繁琐费力,一直到《数学原理》第一卷的363页才推出“1”的定义,而第二卷费了很大力气证明了n×m=m×n。

在《数学的原理》及《数学原理》中,罗素的目标在于证明“数学和逻辑是全等的”这个逻辑主义论题,它可以分析为三部分内容:

1、每条数学真理都能够表示为完全用逻辑表达或表示的语言。简单来讲,即每条数学真理都能够表示为真正的逻辑命题。

2、每一条真的逻辑命题如果是一条数学真理的翻译,则它就是逻辑真理。

3、每条数学真理一旦表示为一个逻辑命题,就可由少数逻辑公理及逻辑规则推导出来。

这三方面不完全一样,罗素只是分别在各处用一条或两条表示过逻辑主义。由于哥德尔的不完全定理,3是错的,但是还可以坚持1和2。

罗素认为逻辑主义的许多主要论点不是来自他本人,弗雷格就曾明确地表示过一些逻辑主义的观点。但是,逻辑主义观点尽管受到批判,罗素本人还一直坚持。在三十年代以后,还是有许多人发展逻辑主义。

逻辑主义从—开始就遭到批评,“因为如果数学只是一套逻辑演绎系统,那么它怎么可能反映广泛的自然现象呢?它又怎样能够有创造力呢?它又怎样能够产生新观念呢?”用维特根斯坦的话说,数学就是同语反复(重言式),结不出任何新知识。

罗素悖论的出现,使得这一派遭到的攻击更大。彭加勒挖苦他们“逻辑主义的理论倒不是不毛之地,什么也不长,它滋长矛盾,这就更加让人受不了”。罗素—怀特海用了几年时间写出了《数学原理》论证了自己的观点,仍不免遭到讥讽。彭加勒挖苦他们费很大力气去定义1,说“这是一个可钦可佩的定义,它献给那些从来不知道1的人”,别人也说这一套完全是中世纪的教条。更有人指出这种方法的人为性、烦琐性。尤其是可化归公理,显然是硬加上的,没有任何自然之处。尽管如此,逻辑主义总算还能自圆其说。

对逻辑主义致命打击的是哥德尔的不完全性定理,它证明了从逻辑并不能推出算术的正确性来,显然把数学全部化归为逻辑彻底失败了。但是,罗素等人的历史功绩是不可磨灭的,他们为数学奠定了逻辑基础。在一段时期内,《数学原理》是一部引导数学逻辑家的经典,至今它还有一定的意义。

逻辑主义也不是后继无人,英国的拉姆塞、美国的奎因都对逻辑主义作了进一步的发展。

2、直觉主义

直觉主义有着长远的历史,它植根于数学的构造性当中。古代数学大多是算,只是在欧几里得几何学中逻辑才起一定作用。到了十七世纪解析几何和微积分发明之后,计算的倾向大大超过了逻辑倾向。十七、十八世纪的创造,并不考虑逻辑的严格,而只是醉心于计算。

十九世纪初,三个力量出现了,一个是解五次代数方程碰钉子,需要考虑存在性定理。一个是非欧几何不矛盾,是逻辑而不是直觉在起作用。一个是数学分析不严格,产生荒谬的结果。在新的矛盾面前出现一些非构造性结果,也考虑一些无穷的问题。这时追求严密与追求实用构造两种倾向都有增长,不过一般数学家维持着微妙的平衡。

到了十九世纪末,集合论的出现激起这两方面的尖锐斗争。于是出现极端的构造主义者,象克洛耐克否认无理数存在,否认连续函数,他认为任何东西部要有构造步骤或判断准则,但即使他本人的工作也不符合他自己的要求。 

法国数学家彭加勒等人是半直觉主义者,有人称为法国经验主义者。他们反对实无穷,反对实数集合,反对选择公理,主要因为他们认为根本不能进行无穷的构造。

现代直觉主义真正的奠基人是布劳威尔,他于1881年2月27日生于荷兰奥弗西。1897年进入阿姆斯待丹大学学习,一直到1904年,他很快掌握了当时的数学并且发表关于几何第一个结果。他多少受曼诺利的影响,关心当时的基础问题,在1907年博士论文中阐述自己对数学基础问题的观点。

布劳威尔是从哲学中得出自己观点的,基本的直觉是按照时间顺序出现的感觉,而这形成自然数的概念。这倒不是新鲜的,他认为数学思维是头脑中的自由构造,与经验世界无关,只受基本数学直觉为基础的限制,在这方面他是不同于法国经验主义者的。数学概念进入人脑是先于语言、逻辑和经验的,决定概念的正确性是直觉,而不是经验及逻辑。这些充分暴露了他唯心主义和神秘主义的思想倾向。

布劳威尔认为数学直觉的世界和感觉的世界是互相对立的,日常的语言属于感觉世界,不属于数学。数学独立于语言存在,而逻辑是从属于语言的,它不是揭露真理的工具,而是运用语言的手段。正因为如此,数学中最主要的进展不是靠逻辑形式完美化而得到,而是靠基本理论本身的变革。

布劳威尔认为逻辑规律并不对数学有什么约束作用,数学是自由的,不一定遵守什么逻辑规则。他认为经典逻辑是从有限集合的数学抽象出来,没有理由运用到无穷集合。1908年,他反对把排中律运用于无穷集合上,因为有穷集合可以逐个检查,而无穷集合则办不到,因此存在不可断定真假的第三种情况,就是说有既不可证明,又非得要证明的命题。

1908年到1913年,布劳威尔主要从事拓扑学的研究,他运用单形逼近的方法证明了维数的拓扑不变性,这在数学上是个了不起的成就,是极重要的拓扑方法。他在李群、几何等方面也有出色的工作,不过很快他又转向基础研究。

布劳威尔象康德和彭加勒一样,认为数学定理是先验综合真理。他在1912年的阿姆斯特丹大学就职演说中,他承认由于非欧几何的发展,康德的空间学说不可信。但他同弗雷格和罗素相反,仍然坚持康德的观点,算术是从对时间的直觉导出的。由于现代数学是建立在算术基础上的,所以整个数学也是如此。正是时间单位的序列产生序数的概念,而连续统[0,1]只是不可用新单位穷尽的居间性,他认为几何学也依赖于这种直觉。他认为除了可数集合之外,没有其他集合,所以ω以上的超穷数都是胡说八道,象 0与 1之间所有实数的集合是毫无意义的。这点他在1908年罗马召开的国际数学家大会上讲过,数学无穷集合只有一个基数,即可数无穷。

1909年他同希尔伯特通信,指出形式主义和直觉主义的争论焦点。1912年说到这个问题之后,他一直到1917年才又开始这方面的论战。从这时起到二十年代末他发表一系列的文章,开始建立一个不依靠排中律的集合论,接着又建立构造的测度论及函数论,这是他从消极的否定转变为积极的构造。同时他试图使数学家相信排中律导出矛盾。他运用了扇定理,这个定理及选择序列、散集等是他的直觉主义数学的独创。

三十年代初期由于哥德尔的工作,许多数学家开始重视直觉主义。外尔早在1920年左右就表示效忠于直觉主义,从而激起希尔伯特的极大愤怒。他吸收了直觉主义一些思想,开始用有限主义方法来完成证明论方案,企图一劳永逸地解决基础问题,不料没能成功,于是还得求助于无穷。

直觉主义仍然进行他们的事业,特别是海丁建立直觉逻辑系统,它包含古典逻辑系统。后来更有人建立直觉主义集合论及直觉主义分析。不过,仍然不能尽如人意。

1967年,美国数学家毕肖普出版《构造性分析》一书,开始了构造主义的时期。他们不象以前直觉主义者那样偏激,而是积极采用构造的方法解决一个个具体问题。不去单纯的否定或争论。毕肖普自信会取得大多数人的支持,不过没有能实现,因为他们毕竟成就有限,难于同整个数学汪洋大海相比,可是十几年来构造主义还是取得一定进展,如《构造性泛函分析》等书问世,说明它还有一定的市场。

3、形式主义

一般认为形式主义的奠基人是希尔伯特,但是希尔伯特自己并不自命为形式主义者。并且,希尔伯特的思想有一个发展变化的过程,我们简单地介绍一下。希尔伯特是二十世纪最有影响的数学家,他不仅是数学上一些分支的公认权威,而且恐怕也是最后一位在几乎所有数学领域中都做出伟大贡献的全才。更重要的是,他对于数学基础问题有着长时期的持久关注,他的思想在现代数学也占有统治地位。

大卫·希尔伯特,1862年1月23日出生在东普鲁士的哥尼斯堡。他一直在家乡上学,1885年取得博士学位,1886年就任哥尼斯堡大学讲师。1888年因为解决了不变式理论中著名的“哥尔丹问题”开始在数学界崭露头角,1891年他升任副教授,1893年升任教授。1895年,他应克莱因之邀,任哥丁根大学教授,由此开辟了哥丁根大学的黄金时代。他在哥丁根大学任教至1930年退休,其间培养了各国数学家,单是他指导的博士论文就有五、六十篇。由于他的影响,哥丁根成为世界数学的中心,繁盛了三、四十年,一直到希特勒掌权后才迅速地衰落下去。晚年学生大都离开,他于1948年2月14在孤寂中逝世。

希尔伯特前期主要供献在不变式论方面。1895年左右,他写了代数数论的总结性巨著。二十世纪开始时,他的兴趣转向分析及物理学。从十九世纪末,他对数学基础做出重大贡献。为了方便起见,不妨把他关于数学基础和数理逻辑的主要著作开列如下:

1899年,《几何学基础》,本书多次宣印及再版,生前最后一版为第七版(1930年)。正文部分有中释本。

1900年,实数的公理化,以及“数学问题”

1904年,在海德堡国际数学家大会上的讲演—“论逻辑和算术的基础”

1917年,公理化思想

1922年,“数学的新基础”,以及“数学的逻辑基础”

1925年,论无穷

1927年,数学基础

1928年“数学基础问题”在意大利波洛那国际数学家大会上讲演;《理论逻辑纲要》(同阿克曼台著),本书很快成为标准著作。1938年第二版,1949年第三版,有中译本,莫绍接译《数理逻辑基础》,1959年第四版,阿克曼做了很大的改动。

1930年,“初等数论基础”“逻辑及对自然的认识”

1931年,“排中律的证明”

1934年,《数学基础》Ⅰ;1939年,《数学基础》Ⅱ,这两本书与贝纳斯合著

从希尔伯特的著作看来,希尔伯特提出了大部分形式主义观点,但他并没有把它们绝对化。他的观点有些地方同逻辑主义、直觉主义有着共同之处。这反映出某种矛盾,应该说这种矛盾是数学家的哲学思想上的矛盾。

关于数学中的存在,他认为不限于感觉经验的存在。在物理世界中,他认为没有无穷小、无穷大和无穷集合,但是在数学理论的各个分支中却都有无穷集合,如自然数的集合,一个线段里所有点的集合等等。这种不是经验能够直接验证的对象,他称之为“理想元素”。引进理想元素的方法在数学中其实由来已久,比如代数中虚数的引进,几何中无穷点的引进,微积分中无穷小与无穷大的引进等等。但是理想元素的引进必须不把矛盾带到原来的较窄狭的领域内。由于理想元素不能靠直观经验来验证,只能靠逻辑来验证,因此合理性的唯一判据就是无矛盾性。这种无矛盾性的真理观实际上是形式主义基本论点。

但是希尔伯特并不抱这种极端和绝对的看法,他看到引进新元素往往是对于旧元素的一种扩张,所以很自然地要求扩张之后增加的新元素仍能保留旧元素的大部分基本性质,就象数的扩张仍能使加法交换律保持成立。当然这样也就在一定意义下限制了扩张的任意性,这也是因为对于搞研究的数学家来讲,引进新概念是为了需要,而不是“游戏”,所以希尔伯特还认为“需要有相应的成果”,而且这是“至高无上的裁判”。把这个标准弄进来,反而使得标准变得模糊不清。

但是在什么情况下,关于理想元素的命题为真呢?这个问题,希尔伯特不认为每个个公式都必须得到验证,每一个概念都必须得到解释,然后通过直观验证。 

在1900年的《论数的概念中》,希尔伯特提议用公理化方法来代替“生成的”方法。在《几何学基础》中,希尔伯特超过解析几何选出的算术模型来证明他的几何公理的无矛盾性。这样证明的是相对无矛盾性,也就是把几何学的无矛盾性归于实数的算术公理的无矛盾性。于是他在1990年国际数学家大会上把算术公理的无矛盾性列
第六章:数学与哲学

他那著名23个问题中的第二个。他没有指出任何解决这个问题的途径,而只是强调相对无矛盾性的证明没有问题。

不久,罗素悖论变得众所周知,从而无矛盾性问题变得更加紧迫。于是,希尔伯特在1904年在德国海德堡召开的国际数学家大会上提出第一个证明算术无矛盾性的打算。事实上,这是现代这方面研究的原型。他的草案是:要证明某些初等公式具有无矛盾性,并且推演规则传递这个性质。

在这篇题为《论逻辑和算术的伪基础》的报告开头,希尔伯特评论对于算术基础的不同看法。他认为,克洛耐克是教条主义者,因为他原原本本地接受整数及其所有重要性质,他不再深入下去探求整数的基础。德国科学家赫姆霍茨是经验主义者,按照他的说法,任意大的数不能够由我们的经验得出,因此是不存在的。另外有一些人,特别是德国数学家克里斯多弗张反对克洛耐克的观点。他们认为,要是没有无理数的概念,整个数学分析就势必要垮掉。于是他们企图找寻正面的、肯定的性质来确认无理数的存在。但是,他认为这种观点是不彻底的,因此说他们是机会主义的。这几种观点,希尔伯特都表示反对。

希尔伯特认为比较深入的观点是下面几种:一是弗雷格的逻辑主义,他把数学规则建立在逻辑的基础上;二是戴德金的先验主义,他是根据哲学上的论证来推断无穷的存在,不过他对数的论述中包含着“所有对象的集合”这类矛盾了;三是康托尔的主观主义观点,他清楚地区分“相容集”及“不相容集”。但是他没有提供明显的判据,因此缺乏客观的可靠性。

希尔伯特认为所有困难都可以通过给数的概念建立完全而严格的基础而得到克服,这就是公理化方法。1904年以后,希尔伯特把主要精力放在研究积分方程等分析问题以及物理学公理此等方面,没有发表什么数学基础方面的著作。这时,各种流派进行的激烈斗争,也不能不使希尔伯特关心。尤其是布劳威尔直觉主义的出现,他感到对于整个数学的生存和发展是个极大的威胁,于是他开始投入战斗。

从1917年起的二十多年时间里,他为了挽救古典数学竭尽全力。1917年他在苏黎世发表一篇演说,题目是“公理思想”。这篇文章全面叙述了一些与认识论有关的问题,如数论和集合论的无矛盾性,每个数学问题的原则上可解性,找出数学说明的单纯性,的标准数学中内容与形式表示的关系,数学问题通过有限步骤的可判定性问题。这些问题预示着后来数理逻辑的发展。他认为,要想深入研究就必须对数学证明的概念进行深入的研究。既然逻辑推理可以符号化,进行数学的研究,为什么证明不行呢?他提出了证明论的一般思想和目标,但是没有具体化。

希尔伯特他第一篇证明论的工作是1922年发表的,在《数学的新基础:第一篇》中,他论述如何把数论用有限方法讨论,而数学本身却一般须用超穷方法。他指出用符号逻辑方法可以把命题和证明加以形式化,而把这些形式化的公式及证明直接当做研究对象。在1922年在德国自然科学家协会莱比锡会议上,他做了《数学的逻辑基础》的演讲,更进一步提出了证明方法。要求有限主义,即经过有限步不推出矛盾来即为证明可靠,这称为希尔伯特计划。

其实早先弗雷格已经坚持认为需要有明显的符号系统,明显的公理及推演规则,明显的证明。希尔伯特定走的更远,他提出这样一种明显理论本身也做为一种数学研究的对象,且应用适当的方法来判定它是否无矛盾,这种做法一般称为元数学。

希尔伯特建议两条最基本的原则:一、形式主义原则:所有符号完全看做没有意义的内容,即使将符号、公式或证明的任何有意的意义或可能的解释也不管,而只是把它们看作纯粹的形式对象,研究它们的结构性质;二、有限主义原则,即总能在有限机械步骤之内验证形式理论之内一串公式是否一个证明。应用数学方法于这样一个形式理论,避免涉及无穷的推断,这就排除了康托尔集合论的方法。这个思想是只应用靠得住的方法,因为要证明数学或其一部分无矛盾的方法是大家公认可靠的,整个数学才有牢固的基础。

4、数学与哲学

现代的数学家大都很少关心哲学文题,甚至对基础问题一般都不闻不问。从二十世纪三十年代之后,数理逻辑成为一门极为专门的学科,象几何、拓扑、分析、代数、数论一样,成为专家研究的对象,外行简直难于理解。

这样一来,数学家与数学基础、数理逻辑,乃至数学哲学脱离的越来越远,这可以从当代一位有影响的数学家的说法看出来。布尔巴基学派主要成员丢东涅谈到:“众所周知,从十九世纪后半叶以来,数理逻辑和集合论的发展引起当时许多数学家的兴趣乃至极大的热情,他们甚至并非逻辑专家,也毫不迟疑地参与由这些问题所引起的论战。到今天,这种局面完全两样。我觉察不到当代数学界的年轻的领袖人物对于基础问题表示过程何兴趣,除非他们专搞这一行”。当然,他们也不能说没有自己的哲学。拿布尔巴基学派来说,他们就是形式主义派的极端代表。不过,他们对哲学论战不那么感兴趣罢了。

在十九世纪末,这种情况则完全不一样。哲学的论战与基础问题紧密结合在一起,成为几乎每位重要数学家的关注对象。到了二十世纪,更是有着所谓三大派——逻辑主义、直觉主义和形式主义的争论。不过这些争论问题并没有得到解决,更重要的是,它们似乎离数学问题越来越远,因此越来越失掉了指导意义。

三十年代以后,讨论数学哲学的不多论著大都是数理逻辑专家或哲学家写的。因此,他们讨论的哲学问题大都偏重于数理逻辑,而较少涉及数学本身的哲学问题。王浩在他的《从数学到哲学》—书中,谈到数学哲学讨论的主要问题:1、纯粹逻辑的本性及其在人类知识中的地位;2、数学概念的刻划;3、直觉及形式化在数学中的地位;4、逻辑与数学的关系;5、数学的本性及其与下列诸概念的关系,必然性、分析性、真理性、先验性、自明性;6、数学在人类知识中的地位;7、数学活动及实际。

显然这些问题都是数理逻辑专家感兴趣的题目。但是在过去,数学哲学的题目比这更广泛、更一般。我们列举几条:1、数学的对象以及它们与现实世界(或实在)的关系;2、(由此产生的)数学中的“存在”,乃至无穷的意义;3、数学活动的本质是发现还是发明;4、数学的真理性、绝对性、相对性、约定性;5、真理的判断标准;6、数学与逻辑的关系;7、数学的方法论,公理化与形式化。

数学作为人类知识体系的一部分,不能不直接或间接和人类社会实践活动有关。在长期实践过程中,人们进行计数、计算、测量、造型(建筑)、产生出算术、代数、几何等方面数学知识。随着人类认识的深入,形成了数学的体系,它的内容主要是符号化、计算方法、概念与规律性、证明推理。

到了十九世纪七十年代,数学内容进一步发生变化:集合论成为统一数学的新基础,数理逻辑的形成、公理化运动、数学结构、抽象数学概念指数增长。在这种情况下数学内容与其实际背景脱离越来超远,从局部看来仿佛是从天上掉下来的,这就导致数学对象的唯心主义理解。

关于数学的对象有三种观点:实在论、观念论、形式主义,实在论观点是说数学命题反映我们物理世界最普遍的性质。这种观点比较古老,很长时期占统治地位。按照这种观点,数学是物理科学的一部分。

观念论的数学观认为数学的对象是某种精神或思想对象。观念论按照对象的性质又可以区分为各种观点:一个极端是柏拉图主义,它把经典数学的对象无穷扩张也有其现实性;另一个极端是直觉主义,数学对象是先验的一时的直觉过程。

这种观念论的数学观也遭到批评,一是不确切,二是另有形而上学的假定,而数学应该除掉形而上学前提条件。拿直觉主义来讲什么是“直觉”呢?很难讲清。不过,它们有这样的性质:1、它本质上是一种思维活动;2、它是先验的;3、它不依赖于语言;4、它是客观的,也就是对于所有思想者都是同样的。

形式主义的数学对象是形式系统,形式系统与以上两种数学观的对象不同,它只是一个架子,指定一些对象而不管其意义如何,然后由对象按照一定规则组成项,并规定由项组成的一些原始话题的方式,再指定一些原始命题称为公理及推演规则。数学的对象就是这样构成的形式系统,其主要任务就是由这些对象推出定理来。从某种意义上来讲,形式主义的数学就是符号游戏。


从上述几种观点看来,持实在论及柏拉图主义观点的人认为数学是不依赖于人们对它的认识而存在,因而具有绝对真理的性质,所以数学家的工作就在于发现这种真理。但是直觉主义者和形式主义者则认为数学家的工作在于发明。当然,人们是不可能凭空发明任何东西的。对于直觉主义者来讲,总是承认自然数是给定的,至于别的就是人们从自然数出发的发明。

形式主义者的形式系统虽说可以任意选出,但是终究在发明过程中也仰赖于经验及过去的知识,或者说是从客观世界中归纳出来的。要不然,那就的的确确是游戏了。

不过直觉主义的发明和形式主义的发明完全不同。直觉主义的发明不是任意的,而是必须能够具体选出来,也就是从自然数经过有限多步写出来。他们主张,要证明一个数学对象存在,必须指出这个对象是怎样造出来的。这种观点可以远溯到德国著名哲学家康德,他认为数学最终的真理性在于数学概念可以通过人的智慧来构造。

由于对数学对象的观点不同,所以对于数学命题的真假以及数学的可接受性也有不同的看法。一门数学是否被大家接受往往不只是靠真、假,而且还有许多其他因素,特别是是否有直观或经验的依据,以及实用性。当然最重要的是真假,不过各派的真理观距离实在太远。

对于实在论者,数学命题的真假靠实践检验。它正如物理学及生物学命题一样,靠观察实验。比如高斯的确实实在在地在地球上找三点,具体测量三角形内角之和是否为180°。对于观念论者,数学命题的真假要靠先验的假定。

对于形式主义者,数学命题无所谓绝对真假,而是相对于某一个系统,但是这个系统必须是无矛盾的,无矛盾性是真理的判断标准。

产生最大矛盾之处是关于无穷的概念。在有穷的问题上,各派的对立没有那么尖锐,它主要是数学中到处出现的无穷造成的。在古希腊,关于无穷可分性没连续性的芝诺悖论使数学家对无穷特别小心。欧几里得的无穷是潜在的无穷,他不讨论无穷长的直线而只讨论可以延伸到任意长度的线段。他对无穷观念表现在“素数无穷多”是指任何有限多素数集台之外还有素数,而不考虑所有素数的无穷整体。数学家一直回避这种实在的无穷。一直到康托尔集合论之前,他们都局限于潜在的无穷,这就是超越过所有有限的变化着的有限。

而实在的无穷则分为三类:1、绝对的实在无限,完全独立的、超越世界而存在的,在神中实现的绝对的实无穷;2、超穷,现存世界或被造世界中具体化的无穷;3、超穷数,人仍所认识的抽象的实在的无穷。

依据对超穷和超穷数的见解,可以区分为下面四种观点:1、完全否认超穷和超穷数,如柯西;2、承认具体的实在无穷,但否认抽象的实在无穷,例如笛卡尔、莱布尼兹、洛克、斯宾诺莎都持这种看法;3、神学的观点,承认抽象的实在无穷而否认具体的实在无穷,也就是显示上帝的伟大,只有上帝才是无穷的,而他所创造的世界只能是有限的;4、康托尔的观点是既承认抽象的实在无穷,也承认具体的实在无穷,康托尔的观点中有柏拉图 主义的成份,他不是形式主义者。
结束语

数学素以精确严密的科学著称,可是在数学发展的历史长河中,仍然不断地出现矛盾以及解决矛盾的斗争。从某种意义下讲,数学就是要解决一些问题,问题不过矛盾的一种形式。

有些问题得到了解决,比如任何正整数都可以表示为四个平方数之和;有些问题至今没有得到解决,如哥德巴赫猜想:任何大偶数都再可以表表示为两个素数之和。我们还很难说这个命题是对还是不对,因为随便给一个偶数,经过有很多次试验总可以得出结论,但是偶数有无穷多个,你穷毕生精力也不会验证完。也许你能碰到到一个很大的偶数,找不到两个素数之和等于它,不过即使这样,你也难以断言这种例外偶数是否有限多个,也就是某一个大偶数之后,上述歌德巴赫猜想成立。这就需要证明,而证明则要用有限的步骤解决涉及无穷的问题。借助于计算机完成的四色定理的证明,首先也要把无穷多种可能的地图归结成有限的情形,没有有限,计算机也是无能为力的。因此看出数学永远回避不了有限与无穷这对矛盾。只要无穷存在,你就要应付它。这可以说是数学矛盾的根源之一。

在处理出现矛盾的过程中,数学家不可能不进行“创造”,这首先表现在产生新概念上,我们不妨先不管自然数。为了解决实际问题、人们必须发明出“零”来,然后要造出负数、有理数、无理数乃至虚数。所谓虚,就是不实,凭空想象出来的意思,不过解代数方程有必要把它请进来,请进来后又觉得它不实在、不太放心。后来它用处很大,能解决非它不可的问题,于是轰也轰不走了。

复数挤进数学王国之后,跟着四元数、八元数、超复数……都来了,它们可没有复数都么大的用处,甚至根本没用。要还是不要呢?这也使数学家处于为难的境地。数学家经常处于这种矛盾的过程中。

“什么是存在?”,这是数学的一个基本问题。什么东西可以挤进数学王国?直觉主义者规定一个较窄的限制:必须能够一步一步构造出来;而形式主义者规定一个较宽的限制:只要没有矛盾就行了。不过什么叫没有矛盾?当然逻辑没有矛盾,其实就是遵守形式逻辑规律。可是形式逻辑是从人类有限经验推出来的,对于无穷情形还灵不灵?这当然存在问题,可是不许推广,那数学还能剩下多少靠得住的东西呢?

在数学史上这种矛盾也是屡见不鲜的。无穷小量刚出现时,漏洞百出、无法自圆其说,可是行之有效、解决问题。所以达朗贝尔说:“前进,你就能恢复信心!”,这可以说是一种实用主义态度。

十九世纪,柯西和维尔斯特拉斯用极限概念解决了矛盾,同时也扔掉了无穷小,这里无矛盾性占了上风。1961年,罗滨逊发明非标准分析,又把无穷小量请了回来,仍然没有矛盾。不过它是建立在模型论基础上,要承认非可数无穷基数的存在。

承认无穷集合,承认无穷基数,就好象打开潘朵拉的盒子,一切灾难都出来了。这就是第三次数学危机的实质。尽管悖论可以消除,矛盾可以回避,数学的确定性却在一步一步丧失。最近莫利斯·克莱因写了一本《数学—确定性的丧失》一书,就是讲的这件事。

现代公理集合论的一大堆公理简直难说孰真孰假,可是又不能把它们一古脑儿消除掉,它们跟整个数学可是血肉相连的。所以第三次危机表面上解决了,实质上更深刻地以其它形式延续看。矛盾既然是固有的,它的激烈冲突—危机也会给数学带来许多新内容,新认识,有时也带来革命性的变化。

把二十世纪的数学同前整个数学相比,内容不知丰富了多少,认识也不知深入了多少。在集合论的基础上,诞生了抽象代数学、拓扑学、泛函分析与测度论。数理逻辑也兴旺发达,成为数学有机整体的—部分。古代的代数几何、微分几何、复分析现在已经推广到高维,代数数论的面貌也多次改变,变得越来越优美、完整。一系列经典问题完满地得到解决,同时又产生更多的新问题。特别是二次大战之后,新成果层出不穷,从未间断。教学呈现无比兴旺发达的景象,而这正是人们在同数学中矛盾斗争的产物。