逆战好号账号密码大全:基本量纲和常数

来源:百度文库 编辑:九乡新闻网 时间:2024/10/06 00:28:17
Constants of physics and mathematics compiled by Stanislav Sykora, Extra Byte, Via R.Sanzio 22C, Castano Primo, Italy 20022
in Stan's Library, Ed.S.Sykora, Vol.I. First release March 1, 2005. Last update December 31, 2007.
Lists the latest CODATA values and their successive improvements !
Permalink via DOI:  10.3247/SL2Phys07.001 SI Units | Dimensions of various quantities Stan's LINKS | Stan's Library | Stan's HUB
  • Universal constants
  • Electron and atomic physics constants
  • Physico-chemical constants
  • Conventional constants
  • Formats and other Notes
  • References and Links
  • Electromagnetic constants
  • Nuclear and particle physics constants
  • Electromagnetic radiation constants
  • SI conversion factors
  • Mathematical constants (separate page)
Constant Value Dimension Alias Definition & Notes Universal constants  Speed of light c  2.997 924 580 e+8  m.s-1 m/s  Now assigned (see SI units)  Gravitation constant G  6.67428[67] e-11  kg-1.m3.s-2   force = G M1M2 / r122 Planck constant h  6.626 068 96[33] e-34  kg.m2.s-1 J.s  = energy quantum / frequency Angular Planck constant  1.054 571 628[53] e-34  kg.m2.s-1 J.s  h/2π Planck mass mp  2.176 44[11] e-8  kg  kg  mp2 = (h/2π) c / G  Planck time tp  5.391 24[27] e-44  s  s  = (h/2π) / (mpc2) Planck length lp  1.616 252[81] e-35  m  m  = ctp  Planck temperature  1.416 785[71] e+32  K  K  = mpc2 / k Hubble constant  2.29[13] e-18  s-1   Universe expansion rate, 70.8±4.0 (km/s)/Mpc Electromagnetic constants  Permeability of vacuum μ0  12.566 370 614... e-7  kg.m.s-2.A-2 H/m | N/A2 = 4π.10-7. Assigned. Permittivity of vacuum ε0  8.854 187 817... e-12  kg-1.m-3.s4.A2 F/m  = 1 / (c2 μ0). Assigned. Impedance of vacuum Z0  376.730 313 461 ...  kg.m2.s-3.A-2 Ω  Assigned by Z02 = μ00. Elementary charge e  1.602 176 487[40] e-19  s.A  C    Charge/Quantum ratio  2.417 989 454[60] e14  kg-1.m-2.s2.A A/J  = e / h  Quantum/Charge ratio  4.135 667 33[10] e-15  kg.m2.s-2.A-1 J/A  = h / e  Fine structure constant α  7.297 352 5376[50] e-3  Dimensionless    = μ0 c e2 / 2h. July 2006 [1]. Inverse of fine structure constant 137.035 999 679[94]  Dimensionless    = 1/α = 2h / (μ0 c e2). See ref.[1]. Magnetic flux quantum Φ0  2.067 833 667[52] e-15  kg.m2.s-2.A-1 Wb  = h / 2e  Conductance quantum G0  7.748 091 7004[53] e-5  kg-1.m-2.s3.A2 S  = 2e2 / h Inverse of conductance quantum  1.290 640 377 87[88] e+4  kg.m2.s-3.A-2 Ω  = RK / 2  Josephson constant KJ  4.835 978 91[12] e14  kg-1.m-2.s2.A Hz/V  = 2e / h . Conventional: 483597.9 GHz/V von Klitzing constant RK  2.581 280 755 7[18] e+4  kg.m2.s-3.A-2 Ω  = h / e2. Conventional: 25812.807 Ω Electron and atomic physics constants  Electron rest mass me  9.109 382 15[45] e-31  kg  kg  = 0.510 998 910[13] MeV  Electron rest mass me in atomic units  5.485 799 094 2[23] e-4  u  u    Electron charge/mass ratio  - 1.758 820 150[44] e11  kg-1.s.A C/kg  = e / me  Compton wavelength of electron  2.426 310 217 5[33] e-12  m  m  λC,e = h / c me  Classical electron radius re  2.817 940 289 4[58] e-15  m  m  = e2 / (4πε0mec) Thomson cross section σe  0.665 245 855 8[27] e-28  m2 m2 = (8π/3) re2 Quantum of circulation  3.636 947 519 9[50] e-4  m2.s-1 m2/s = h / 2me  Bohr magneton μB  9.274 009 15[23] e-24  m2.A J/T  = 2π h e / me  Electron spin Se  1/2  Dimensionless      Electron magnetic moment μe  - 9.284 763 77[23] e-24  m2.A J/T  Last update July 2006 [2]  Electron g-factor  - 2.002 319 304 362 2[15]  Dimensionless    = μe / (Se μB).  Electron/Proton magnetic moments ratio  - 658.210 684 8[54]  Dimensionless      Electron/Proton magnetic moments ratio  - 658.227 597 1[72]  Dimensionless    Shielded in water; standard conditions  Electron gyromagnetic ratio γe  28.024 953 64[70] e+9  kg-1.s.A Hz/T  γe = μe / h Se  Rydberg constant R∞  1.097373 156 852 7[73] e+7  m-1 m-1 = c α2 me / 2h  Hartree energy EH  4.359 743 94[22] e-18  kg.m2.s-2 J  = α2 me c2 = 2h c R∞  Bohr radius  5.291 772 08 59[36] e-11  m  m  = α / (4π R∞)  Physico-chemical constants  Atomic mass constant u  1.660 538 782[83] e-27  kg  kg  Mass of 12C nuclide / 12 Molar mass of  12C  12 e-3  kg  kg  Assigned  Molar mass constant  1 e-3  kg.mol-1 kg/mol  Assigned  Boltzmann constant k  1.380 6504[24] e-23  kg.m2.s-2.K-1 J/K  Sets thermodynamic temperature  Boltzmann constant in eV/K  86.173 43[15] e-6  kg.m2.s-3.A-1.K-1 V/K  = k/e. Electrochemical potential ~ (k/e)T ln(c1/c2)  Avogadro's number NA  6.022 141 79[30] e+23  mol-1 mol-1 Particles in a mole of substance  Molar Planck constant  3.990 312 682 1[57] e-10  kg.m2.s-1.mol-1 J.s/mol  = h NA  Molar Planck constant by c  0.119 626 564 72[17]  kg.m3.s-2.mol-1 J.m/mol  = h c NA  Electron molar mass  5.485 799 094 3[23] e-7  kg.mol-1 kg/mol  = me NA  Electron molar charge  -9.648 533 99[24] e+4  s.A.mol-1 C/mol  = e NA.  Faraday constant F  9.648 533 99[24] e+4  s.A.mol-1 C/mol  = |electron molar charge|.  Molar gas constant R  8.314 472[15]  kg.m2.s-2.K-1.mol-1 J/K.mol  = k NA  Molar volume of ideal gas Vm  22.413 996[39] e-3  m3.mol-1 m3/mol = (RT/p)  at T=273.15 K, p=101325 Pa  Loschmidt constant n0  2.686 777 4[47] e25  m-3 m-3 = NA / Vm at T=273.15 K, p=101325 Pa  Sackur-Tetrode constant S0/R  - 1.151 704 7[44]  Dimensionless    (5/2)+ln[(2πmukT/h2)(kT/p)] at T=1K, p=100 kPa.  Electromagnetic radiation constants  Stefan-Boltzmann const. σ  5.670 400[40] e-8  kg.s-3.K-4 W/m2.K4 = 2 π5 k4 / 15 h3 c2  1st radiation constant c1  3.741 771 18[19] e-16  kg.m4.s-3 W.m2 = 2 π h c2  2nd radiation constant c2  1.438 775 2[25] e-2  m.K  m.K  = h c / k  Wien displacement constant  2.897 768 5[51] e-3  m.K  m.K  = λmaxT = c2 / 4.9651423...  Max.luminous efficacy; absolute  683  cd.sr.kg-1.m-1.s3 lm/W  100% efficient, ideal 555 nm light source.  Max.luminous efficacy: black-body  95  cd.sr.kg-1.m-1.s3 lm/W  Achieved at 7000 °K. See Wikipedia  Solar luminous efficacy  93  cd.sr.kg-1.m-1.s3 lm/W  see Wikipedia  Solar illuminance  1.280[10] e5  cd.sr.m-2 lx  in the brightest sunlight, on Earth  Solar constant  1.36594[48] e3  kg.s-3 W/m2 total solar elmag irradiation at 1 AU distance  Conventional constants  Standard gravity acceleration  9.806 65  m.s-2 m/s2 Assigned. Called 1 g (gee). Standard atmosphere  101 325  Pa    Assigned. Called 1 atm. Molar mass constant  0.001  kg.mol-1 kg/mol  Assigned (exact)  Molar mass of  12C  0.012  kg  kg  Assigned (exact)  SI conversion factors  Electron volt  1.602 176 487[40] e-19  kg.m2.s-2 J    Astronomical unit ua, au  1.495 978 70[30] e+11  m  m  Mean Earth-to-Sun distance  Atomic mass constant u, mu  1.660 538 782[83] e-27  kg  kg  Mass of 12C nuclide / 12  Nuclear and particle physics constants  Fermi coupling GF/(hc/2π)3 3.670 336[31] e+48  kg-2   = (1.026 8365[88] e-5) / mp2 Fermi coupling in eV-2  1.166 37[1] e+4  eV-2     Weak mixing angle sin2θW  0.222 55[56]  Dimensionless    = 1- (mW/mZ)2 Proton rest mass mp  1.672 621 637[83] e-27  kg  kg  938.272 013[23] MeV = 1.007 276 466 77[10] u  Nuclear magneton μN  5.050 783 24[13] e-27  m2.A J/T  = 2π h e / mp  Nuclear magneton in Hz/T  7.622 593 84[19] e+6  kg-1.s.A Hz/T  = μN/h = [Larmor freq.]/[g-factor].  Compton wavelength of proton  1.321 409 844 6[19] e-15  m  m  λC,p = h / c mp  Proton magnetic moment  1.410 606 662[37] e-26  m2.A J/T  μp  Proton g-factor  5.585 694 713[46]  Dimensionless    = μp / (Sp μN)  Proton gyromagnetic ratio  42.577 482 1[11] e+6  kg-1.s.A Hz/T  γp = μp / h Sp.  Proton gyromagnetic ratio shielded 42.576 388 1[12] e+6  kg-1.s.A Hz/T  In H2O,  standard conditions Proton magnetic shielding  25.694[14] e-6  Dimensionless    Relative value  Proton rms charge radius  0.8768[69] e-15  m  m    Neutron rest mass mn  1.674 927 211[84] e-27  kg  kg  939.565 346[23] MeV = 1.008 664 915 97[43] u  Compton wavelength of neutron  1.319 590 895 1[20] e-15  m  m  λC,n = h / c mn  Neutron magnetic moment  - 0.966 236 41[23] e-26  m2.A J/T  μn  Neutron g-factor  -3.826 085 45[90]  Dimensionless    = μn / (Sn μN)  Neutron gyromagnetic ratio  29.164 695 4[69] e+6  kg-1.s.A Hz/T  γn = μn / h Sn  Muon rest mass  1.883 531 30[11] e-28  kg  kg  105.658 3668[38] MeV = 0.113 428 925 6[29] u  Muon magnetic moment  -4.490 447 86[16] e-26  m2.A J/T    Muon g-factor  -2.002 331 841 4[12]  Dimensionless      Muon gyromagnetic ratio  135.538 817[12] e+6  kg-1.s.A Hz/T  = μn / h Sn  Tau rest mass  3.167 77[52] e-27  kg  kg  1776.99[29] MeV = 1.907 68[31] u  Deuteron rest mass  3.343 583 20[17] e-27  kg  kg  1875.612 793[47] MeV = 2.013 553 212 724[78] u  Deuteron magnetic moment  0.433 073 465[11] e-26  m2.A J/T    Deuteron g-factor  0.857 438 2308[72]  Dimensionless      Deuteron gyromagnetic ratio  6.535 903 381 41 e+6  kg-1.s.A Hz/T    Helion rest mass  5.006 411 92[25] e-27  kg  kg  2808.391 383[70] MeV = 3.014 932 247 3[26] u  Helion magnetic moment  -1.074 5532 982[30] e-26  m2.A J/T  Shielded  Helion gyromagnetic ratio  32.434 101 98[90] e+6  kg-1.s.A Hz/T  Shielded  α-particle rest mass  6.644 656 20[33] e-27  kg  kg  3727.379 109[93] MeV = 4.001 506 179 127[62] u 

Notes:

- Format of numeric values: mantissa[uncertainty][exponent]. The uncertainty is specified only for experimentally assessed constants and consists in the probable error in the last two digits of mantissa, enclosed in square brackets. The format of the decadic exponent is either e+value or e-value. When the exponent specification is missing, e+0 is intended.
Example: 2.34567[17] e+2 indicates a quantity with the most probable value of 234.567 and an expected error of 0.017.
- Bold magenta values indicate constants whose values are assigned by convention and therefore are no longer subject to experimental assessment. In particular this applies to the speed of light which now indirectly defines the meter and permeability of vacuum which now indirectly defines the ampere. In turn, these determine the permittivity and characteristic impedance of vacuum, making them assigned as well.
- Bold black values indicate physical constants which can not be directly derived from the others (in some cases, such choices may be subject to discussion).
- Vertical bar is used to separate various alias expressions for a dimension.
- Classification does not exactly follow NIST standard but reflects the Author's opinions on what came first - whether the hen or the egg.
- Conventional values:
   a) The conventional (adopted) value of the Josephson constant is used to realize voltage reference devices [1].
   b) The conventional (adopted) value of the von Klitzing constant is used to realize electric resistance reference devices [4].
- The value of Hubble constant was estimated by the group W.Freedman in 1999 as 70±7.0 (km/s)/Mparsec. Values as low as 50 and as high as 82 km/s/Megaparsec were found in earlier measurements but the latest one is now believed to be in error of not more than 10% (the conversion factor for parsec, taken from the current NIST database, is 3.085678e+16 m). The value reported here corresponds to the latest adjustments adopted by NASA (see Wikipedia).

References: Constants of Physics & Mathematics,
sorted by year and by the first author

  • Hatch E.,
    A Few Simple Facts: From the Electron through the Fundamental Constants,
    Lulu.com 2007. ISBN 1-430-30790-0.more >>
  • Gabrielse G., Hanneke D., Kinoshita T., Nio M., Odom B.,
    New Determination of the Fine Structure Constant from the Electron g Value and QED,
    Phys.Rev.Letters 97, 030802 (2006).
  • Odom B., Hanneke D., D'Urso B., Gabrielse G.,
    New Measurement of the Electron Magnetic Moment Using a One-Electron Quantum Cyclotron,
    Phys.Rev.Letters 97, 030801 (2006).
  • Benz S.P., Hamilton C.A.,
    Application of the Josephson Effect to Voltage Metrology,
    Proc.IEEE 92(10),1617-1629 (2004).
  • Fr?lich C., Lean J.,
    Solar Radiative Output and its Variability: Evidence and Mechanisms,
    Astron.Astrophys.Rev. 12,273-320 (2004). DOI.
  • Karshenboim S.G., Peik E., Editors,
    Astrophysics, Clocks and Fundamental Constants,
    Springer Verlag 2004. ISBN 978-3540219675.more >>
  • Pap J.M., Fox P.A., Fr?lich C., Editors,
    Solar Variability and its Effect on Climate,
    in Geophysical Monograph Series, No.141,
    American Geophysical Union 2004. ISBN 978-0875904061.more >>
  • Landwehr G.,
    25 Years of quantum Hall effect: how it all came about,
    Physica E 20(1-2), 1-13 (2003).
  • Bachmair H. et al,
    The von Klitzing resistance standard,
    Physica E 20(1-2), 14-23 (2003).
  • Conroy R.S.,
    Frequency standards, metrology and fundamental constants,
    Contemp.Phys. 4444(2), 99-135 (2003).
  • Finch S.,
    Mathematical Constants,
    Cambridge University Press 2003. ISBN 0-521-81805-2.more >>
  • Hall J.L.,Ye J.,
    Optical Frequency Standards and Measurement,
    IEEE Trans.Instrum.Meas. 52(2), 227-231 (2003).
  • Hatch E.,
    Common Factors of The Fundamental Constants of Particle Physics,
    BookSurge Publishing 2003. ISBN 1-594-57174-0.more >>
  • Kragh H.,
    Magic Number: A Partial History of the Fine-Structure Constant.
    Arch. Hist. Exact. Sci. 57(5),395-431 (2003).
  • Uzan J.P.,
    The fundamental constants and their variation: observational and theoretical status,
    Rev.Mod.Phys. 75(2), 403-455 (2003).
  • Marciano W.J.,
    Precision measurements and New Physics,
    J.Phys. G 29(1), 225-234 (2003).
  • Martins , Editor,
    The Cosmology of Extra Dimensions and Varying Fundamental Constants,
    Springer Verlag 2003. ISBN 1-402-01138-5.more >>
  • Faller J.E.,
    Thirty years of progress in absolute gravimetry:
    a scientific capability implemented by technological advances
    ,
    Metrologia 39(5), 425-428 (2002).
  • Hagiwara K. et al,
    Review of Particle Physics,
    Phys.Rev. D 66, 010001, 974 p. (2002).
  • Fritzsch H.,
    Fundamental Constants at High Energy,
    Fortschr.Phys. 5050(5-7), 518-524 (2002).
  • Becker P.,
    History and progress in the accurate determination of the Avogadro constant,
    Rep.Prog.Phys. 64(12), 1945-2008 (2001).
  • Quinn T.J.,
    Recent Advance in Metrology and Fundamental Constants,
    Ios Press 2001. ISBN 1-586-03167-8.more >>
  • Varshalovich D.A., Potekhin A.Y., Ivanchik A.V.,
    Puzzle Of the Constancy Of Fundamental Constants,
    Comments.At.Mol.Phys. 2(5), D223-232 (2001).
  • Varshalovich D.A., Potekhin A.Y., Ivanchik A.V.,
    Problems of Cosmological Variability of Fundamental Physical Constants,
    Phys. Scr. T95, 76-80 (2001).
  • Taylor B.N,
    The International System of Units (SI),
    NIST Special Publication 330, 2001 Edition (supersedes the 1991 Edition).
  • Mohr P.J.,Taylor B.N.,
    CODATA recommended values of the fundamental physical constants: 1998,
    Rev.Mod.Phys. 72,351-495 (2000).
  • Mohr P.J.,Taylor B.N.,
    CODATA Recommended Values of the Fundamental Constants,
    in Atomic and Molecular Data and Their Applications, Berrington K.A., Bell K.L., Editors, Vol.543,
    Melville, New York: American Institute of Physics, 3-16 (2000).
  • Basov N.G., Gubin A.,
    Quantum Frequency Standards,
    IEEE J.Quantum Electron. 6(6), 857-868 (2000).
  • Luo J., Hu Z.K.,
    Status of measurement of the Newtonian gravitational constant G,
    Class.Quantum Grav. 17(12), 2351-2363 (2000).
  • Groom D.E. et al.,
    Review of particle physics,
    Eur.Phys.J. C 15(1-4), 1-878 (2000).
  • CODATA Recommended Values of the Fundamental Physical Constants: 1998,
    J.Phys.Chem.Ref.Data, 28, No.6, 1999.
  • Quinn T.J.,
    Practical realization of the definition of the metre (1997),
    Metrologia 36(3), 211-244 (1999).
  • Johnstone W.D.,
    For Good Measure:
    The Most Complete Guide to Weights and Measures and Their Metric Equivalents
    ,
    NTC Pub.Group 1998. ISBN 0-844-20851-5.more >>
  • The International System of Units (SI),
    Bureau International des Poids et Measures (BIPM), 7th Edition, 1998.
  • Johnson P.,
    The Constants of Nature: A Realist Account,
    Ashgate Publishing 1997. ISBN 1-840-14102-6.more >>
  • Cohen E.R.,Taylor B.N.,
    The Fundamental Physical Constants,
    Phys.Today, Aug. 1996, bg9.
  • Cowie, Songaila,
    Astrophysical Limits on the Evolution of Dimensionless Physical Constants over Cosmological Time,
    Astrophysical Journal 453, 596 (1995).
  • Sanders J., Editor,
    Atomic Masses and Fundamental Constants,
    Springer Verlag 1995. ISBN 0-306-35084-X.more >>
  • Cohen-Tannoudji G.,
    Universal Constants in Physics,
    McGraw-Hill 1992. ISBN 0-070-11651-2.more >>
  • Sisterna P., Vucetich H.,
    Time variation of fundamental constants: Bounds from geophysical and astronomical data,
    Physical Review D, 41, 1034 (1990), 44, 3096 (1991).
  • De Sabbata V., Melnikov V.N., Editors,
    Gravitational Measurements, Fundamental Metrology, and Constants,
    NATA ASI Series C: Vol.230
    D.Reidel Pub.Co. 1988. ISBN 9-027-72709-0.more >>
  • Petley B.W.,
    Fundamental Physical Constants and the Frontier of Measurement,
    Adam Hilger 1985. ISBN 0-852-74427-7.more >>
  • Lucas A.A., Cutler P.H., North A.,
    Quantum Metrology and Fundamental Physical Constants,
    Springer Verlag 1983. ISBN 0-306-41372-8.more >>
  • Richard E., Crowe K.M., Cohen J.W.M.D.,
    The Fundamental Constants of Physics,
    Intersience Publishers 1957.more >>
  • DuMond J.W.M.,Cohen R.,
    Least Squares Adjustment of the Atomic Constants,
    Rev.Mod.Phys. 25, 691 (1952).
  • Furth R.,
    The Limits of Measurement,
    Scientific American. 183 (1), 48 (1950).
  • Birge R.T.,
    Probable Values of General Physics Constants,
    Rev.Mod.Phys. 1 (Supplement), 1-73 (1929). DOI Link.

Web links

  • NIST Physical Reference Data.
  • NIST Fundamental Physical Constants.
  • NIST Searchable Bibliography of Fundamental Physical Constants.
  • NIST Units of Measurements.
  • BIPM. The home page of the SI System of Units.
  • Solar constant. A brief review by Claus Fr?lich with 9 references.
  • Have physical constants changed with time by S.Carlip.


TOP | SI Units | Dimensions of various quantities Stan's Links | Stan's Library | Stan's HUB | TOP  
  Copyright ?2005,2007 Stanislav Sykora    DOI: 10.3247/SL2Phys07.001 Designed by Stan Sykora ( last update 05/25/2011 16:59:54)