胶州市铺集镇邮编:阅读代码是很困难

来源:百度文库 编辑:九乡新闻网 时间:2024/07/14 05:10:29

Escalation的工程师Jeremy在他博客中问到:“你是怎么教人们快速深入挖掘不熟悉的代码(不是自己所写的)?我学习如何编程的方法很传统 —— 自己动手编码。但我现在很纠结:到底是集中精神阅读源码,还是自己编写。对我而言,似乎唯一有效的方法就是自己写过。”

Eric Lippert是一名资深软件设计工程师,从1996年起一直在微软开发部门任职,他针对Jeremy所提出的问题,写了一篇博文。Eric在文中说:“不是和Jeremy开玩笑,写代码的确没有读代码难。几乎很少有人能读代码但不会写代码(中文)。这不像自然书面语或口语…… ”有些人需要快速切入代码,但不需要动手写代码,那我们如何编写适合这些人的代码?为了使其他人能轻松阅读自己所写的代码,Eric还在文中分享了编码时的注意事项。

CouchDb数据库作者Damien Katz也同意这一观点。

ReadingCode Is Hard

Eric Lippert 14 Jun 2004 11:52 AM

Escalation Engineer JeremyK asks in his blog this morning:

how do you teach people this “art” of digging deep very quickly into unfamilar code that you had no hand in writing? I myself, I come from a very traditional process of learning how to code, by sitting down and writing it. I am struggling with how to tailor a delivery to focus on reading vs. writing source code. To me the only way you can be truly efficient in this process is by having written code yourself.

No kidding Jeremy -- code is way easier to write than it is to read. 

First off, I agree with you that there are very few people who can read code who cannot write code themselves.  It's not like written or spoken natural languages, where understanding what someone else says does not require understanding why they said it that way.  For example, if I were to say something like

"There are two recipes for producing code: a strict and detailed, and a vague and sloppy.  The first produces elegant, tiered wedding cakes, the second, spaghetti."

you would understand what I meant to get across, without having to understand that I'm using the literary techniques of "zero anaphora" and "parallel clauses" to produce a balanced, harmonious effect in the listener/reader.  Heck, you don't even have to know what a "verb" is to understand a sentence!  But with code, it is vitally important that the both intention of the code's author and how the code produces the intended effect be clear from the code itself.

Therefore, I would turn the question around -- how do we WRITE code that is more easily read by people who need to get up to speed very quickly on the code, but who didn't write any part of it?

Here are some of the things I try to do when writing code so that it can be more easily read:

  • Make the code amenable to tools.  Object browsers and Intellisense are great, but I'll tell you, I'm old school.  If I can't find what I want via grep, I'm not happy.  What makes code greppable?

    • Variables with names like "i" are badness.  You can't easily search code without getting false positives.
    • Avoid making names that are prefixes of other names.  For example, we have a performance marker in our code called "perfExecuteManifest", and another called "perfExecuteManifestInitialize".  Drives me nuts every time I want to grep the source code for the former, I have to wade through all the instances of the latter. 
    • Use the same name for “tramp data” in both places.  By tramp data, I mean those variables that you pass to a method only because they need to be passed on to another method.  The two variables are basically the same thing, so it helps if they have the same name.
    • Don't use macros that rename stuff.  If the method is called get_MousePosition then don't declare it with a macro like GETTER(MousePosition) -- because then I can't grep for the actual function name.
    • Shadowing is evil.  Please don't do it.

  • Pick a consistent naming scheme.  If you're going to use Hungarian, use it consistently and universally, otherwise it becomes an impediment rather than a benefit.  Use Hungarian to documentdata semantics, not storage types.  Use Hungarian to document universal truths, not temporary conditions.
  • Use assertions to document preconditions and postconditions.
  • Don't abbreviate English words.  In particular, don't abbreviate them in really weird ways.  In the script engines, the structure that holds a variable name is called NME.  Drives me nuts!  It should be called VariableName. 
  • The standard C runtime library is not a paragon of good library design.  Do not emulate it.
  • Don't write "clever" code; the maintenance programmers don't have time to figure out your cleverness when it turns out to be broken. 
  • Use the features of the language do to what they were designed to do, not what they can do.  Don't use exceptions as a general flow control mechanism even though you can; use them to report errors.  Don't cast interface pointers to class pointers, even if you know it will work.  Etc.
  • Structure the source code tree in functional units, not in political units.  For example, on my team now the root subdirectories are "Frameworks" and "Integration", which are team names.  Unfortunately, the Frameworks team now owns the Adaptor subdirectory of the Integration directory, which is confusing.  Similarly, the various sub-trees have some subdirectories which are for client side components, some for server side components.  Some for managed components, some for unmanaged components.  Some for in-process components, some for out-of-proc components.  Some for retail components, some for internal testing tools. It's kind of a mess. Of all the possible ways to organize a source tree, the political structure is the least important to the maintenance programmer!

Of course, I haven't actually answered Jeremy's question at all -- how do I debug code that I didn't write?

It depends on what my aim is.  If I just want to dig into a very specific piece of code due to a bug, I'll concentrate on understanding data flow and control flow in the specific scenario I'm debugging.  I'll step through all the code in the debugger, writing down the tree of calls as I go, making notes on which methods are produces and which are consumers of particular data structures.  I'll also keep a watchful eye on the output window, looking for interesting messages going by.  I'll turn on exception trapping, because usually exceptions are where the interesting stuff is, and because they can screw up your stepping pretty fast.  I'll put breakpoints all the heck over the place.   I'll make notes of all the places where my suggestions above are violated, because those are the things that are likely to mislead me.

If I want to understand a piece of code enough to modify it, I'll usually start with the headers, or I'll search for the public methods.  I want to know what does this class implement, what does it extend, what is it for, how does it fit into the larger whole?   I'll try to understand that stuff before I understand how the specific parts are implemented. That takes a lot longer, but you've got to do that due diligence if you're going to be making changes to complex code.