计算机软件开发规范:NDIS中间层驱动程序--Thinking

来源:百度文库 编辑:九乡新闻网 时间:2024/07/07 11:37:19

NDIS中间层驱动程序

                                      

1.1 NDIS中间层驱动程序(NDIS Intermediate Drivers)概述 2
1.2 NDIS中间层驱动程序的用途 4
1.3 NDIS中间层驱动程序的开发环境 4
2 NDIS中间层驱动程序的开发 4
2.1 可分页和可丢弃代码 4
2.2 共享资源的访问同步 5
2.3 中间层驱动程序的DriverEntry函数 5
2.3.1 注册NDIS中间层驱动程序 6
2.3.1.1 注册中间层驱动程序的Miniport 6
2.3.1.2 注册中间层驱动程序的协议 8
2.4 中间层驱动程序的动态绑定 11
2.4.1 打开中间层驱动程序下层的适配器 12
2.4.2 微端口(Miniport)初始化 12
2.4.3 中间层驱动程序查询和设置操作 13
2.4.3.1 发布设置和查询请求 14
2.4.3.2 响应设置和查询请求 15
2.4.4 作为面向连接客户程序注册中间层驱动程序 15
2.5 中间层驱动程序数据包管理 17
2.5.1.1 重用数据包 18
2.6 中间层驱动程序的限制 19
2.7 中间层驱动程序接收数据 19
2.7.1 下边界面向无连接的中间层驱动程序接收数据 19
2.7.1.1 在中间层驱动程序中实现ProtocolReceivePacket处理程序 20
2.7.1.2 在中间层驱动程序中实现ProtocolReceive处理程序 21
2.7.1.3 下边界面向无连接中间层驱动程序接收OOB数据信息 22
2.7.2 下边界面向连接的中间层驱动程序接收数据 22
2.7.2.1 在中间层驱动程序中实现ProtocolCoReceivePacket处理程序 23
2.7.2.2 在下边界面向连接的中间层驱动程序中接收OOB数据信息 23
2.7.3 向高层驱动程序指示接收数据包 23
2.8 通过中间层驱动程序传输数据包 23
2.8.1 传递介质相关信息 25
2.9 处理中间层驱动程序的PnP事件和PM事件 26
2.9.1 处理OID_PNP_XXX查询和设置 26
2.9.2 中间层驱动程序ProtocolPnPEvent处理程序的实现 27
2.9.3 处理规定的电源请求 28
2.9.3.1 睡眠状态的电源设置请求 28
2.9.3.2 工作状态的电源设置请求 29
2.10 中间层驱动程序复位操作 29
2.11 中间层驱动程序拆除绑定操作 30
2.12 中间层驱动程序状态指示 31
3 负载平衡和失效替换 31
3.1 关于LBFO 31
3.2 指定对LBFO的支持 32
3.3 在微端口驱动程序上实现LBFO 32
3.3.1 初始化微端口束 33
3.3.2 平衡微端口驱动程序的工作量 33
3.3.3 在主微端口失效后提升一个次微端口 34
4 安装网络组件 34
4.1 用于安装网络组件的组件和文件 34
4.2 创建网络INF文件 35
4.2.1 网络INFS文件名的约定 35
4.2.2 网络INF文件的版本节 35
4.2.3 网络INF文件的模型节 36
4.2.4 INF文件的DDInstall节 37
4.2.5 删除节 38
4.2.6 ControlFlags节 39
4.2.7 网络INF文件的add-registry-sections 39

 

表格 1    缩略语表

 
项目 英文描述 中文描述  
NDIS Network Driver Interface Specification 网络驱动程序接口标准  
IMD Intermediate Drivers 中间层驱动  
TDI Transport driver Interface 传输驱动程序接口  
NIC Network Interface Card 网络接口卡  
SP Service Pack 服务包  
LAN Local Area Network 局域网  
LAN-E LAN Emulation 局域网仿真  
NAT Network Address Translation 网络地址转换  
LBFO Load Balancing And Fail-Over 负载平衡和失效替换  
DDK Device Drivers Kit 设备驱动程序开发包  
SMP Symmetry Multiprocessing 对称多处理  
OS Operating System 操作系统  
IDE Integrated Development Environment 集成开发环境

1 NDIS中间层驱动程序
1.1 NDIS中间层驱动程序(NDIS Intermediate Drivers)概述

微软Windows网络驱动程序接口标准(NDIS 4.0)和Windows NT 4.0(SP3)引入了一种新的NDIS驱动程序,它可以嵌在NDIS 传输驱动程序TDI(如,TCP/IP)和底层的NDIS网络接口驱动程序的中间。这种新类型的驱动程序被称为NDIS中间层驱动,如图表 1。NDIS(网络驱动器接口标准)中间层驱动程序在其上边界导出MiniportXxx函数,在其下边界导出ProtocalXxx函数。该驱动程序在其上边界仅提供面向无连接通信支持,而在其下边界,则即可支持面向无连接通信,也可支持面向连接通信。
中间层驱动程序的微端口部分(上边界)必须是非串行的,系统将依赖这些非串行驱动程序,而不是NDIS对MiniportXxx函数的操作进行串行化处理和对内部生成的输出包进行排队操作,这样驱动程序只要保持很小的临界区(每次只能有一个线程执行该代码)就能提供性能良好的全双工操作。但是这些非串行Miniport要受到更多也更严格的设计要求的限制,往往要为此付出更多的调试和测试时间。
中间层驱动程序是一种典型的层次结构程序,它基于一个或多个NDIS NIC驱动程序,其上层是一个向上层提供TDI(传输驱动程序接口)支持的传输驱动程序(也可能是多层结构)。从理论上讲,一个中间层驱动程序也可以是基于其他中间层驱动程序或作为其他中间层驱动程序的低层出现的,尽管这种方案未必能展现更好的性能。
中间层驱动程序的一个示例是LAN仿真中间层驱动程序,其上层是一个早期传输驱动程序,下层是一个非LAN介质的微端口 NIC驱动程序。该驱动程序从上层接收LAN格式的数据包并将其转换为本地网卡的介质格式,然后将其发送到那个NIC的NDIS 微端口。接收数据时,该驱动程序将低层网卡驱动程序送来的数据包转换为LAN兼容格式,最后向上层传输驱动程序提交这些转换过的数据包。
例如, NDISWAN就具有一些上述特征。NDISWAN将数据包从上层的传输LAN格式转换为WAN数据包格式,或者将数据包从低层的网卡驱动WAN格式转换为LAN数据包格式。另外,如果低层NIC硬件不支持这些功能,那么NDISWAN也可提供诸如压缩、加密和端对端协议(PPP)等的数据格式化功能。 NDISWAN为在NDIS API和网卡驱动程序之间进行通信提供了一个专用接口,同时,NDISWAN也将协议绑定映射为活动连接请求。
另一个中间层驱动程序的例子是ATM LANE (LAN仿真)驱动程序,它将数据包从上层无连接的传输格式转换为下层面向连接的网卡支持的ATM格式。
图1.1说明了中间层驱动程序结构

 

图表 1  中间层驱动程序结构

NDIS 中间层驱动程序在NDIS中起着转发上层驱动程序送来的数据包,并将其向下层驱动程序发送的接口功能。当中间层驱动程序从下层驱动程序接收到数据包时,它要么调用NdisMXxxIndicateReceive函数,要么调用NdisMindicateReceivePacket函数向上层指示该数据包。
中间层驱动程序通过调用NDIS打开和建立一个对低层NIC驱动程序或者NDIS中间层驱动程序的绑定。中间层驱动程序提供 MiniportSetInformation和MiniportQueryInformation函数来处理高层驱动程序的设置和查询请求,某些情况下,可能还要将这些请求向低层NDIS驱动程序进行传递,如果其下边界是面向无连接的可通过调用NidsRequest实现这一功能,如果其下边界是面向连接的则通过调用NidsCoRequest实现该功能。
中间层驱动程序通过调用NDIS提供的函数向网络低层NDIS驱动程序发送数据包。例如,下边界面向无连接的中间层驱动程序必须调用NdisSend或NdisSendPackets来发送数据包或者包数组,而在下边界面向连接的情况下就必须调用NdisCoSendPackets来发送包数组数据包。如果中间层驱动程序是基于非NDIS NIC驱动程序的,那么在调用中间层驱动程序的MiniportSend或Miniport(Co)SendPackets函数之后,发送接口对NDIS 将是不透明的。
NDIS提供了一组隐藏低层操作系统细节的NdisXxx函数和宏。例如,中间层驱动程序可以调用 NdisMInitializeTimer来创建同步时钟,可以调用NdisInitializeListHead创建链表。中间层驱动程序使用符合 NDIS标准的函数,来提高其在支持Win32接口的微软操作系统上的可移植性。

1.2 NDIS中间层驱动程序的用途

NDIS中间层驱动有几个方面的用途,包括:
局域网仿真(LAN Emulation) – NDIS中间层驱动可以使一个非局域网NIC驱动(如,ATM)犹如一个局域网NIC驱动(如,Ethernet)。
包过滤(Packet Filtering) - 可以拦截和修改高层TDI(传输驱动程序)和底层NIC驱动程序之间的网络包(Packets):
通过或过滤掉(Pass/Drop Packets)
延迟或重新排序( Delay/Reorder Packets)
加密或解密(Packet Encryption/Decryption)
压缩或解压(Packet Compression/Decompression)
路由包(Route Packets):
NAT网络地址转换(Network Address Translation)
LBFO负载平衡和失效替换(Adapter Load Balancing And Fail-Over)

1.3 NDIS中间层驱动程序的开发环境

OS :  Microsoft Windows 2000 Server
IDE :  Microsoft Visual C++ V6.0
DDK :  Windows 2000 Device Drivers Kit

2 NDIS中间层驱动程序的开发

2.1 可分页和可丢弃代码

每一个MiniportXxx函数或ProtocolXxx函数都运行在一个特定的IRQL上,在中间层驱动程序中这些函数可使用的IRQL从PASSIVE_LEVEL一直到DISPATCH_LEVEL(包括DISPATCH_LEVEL)。
总是运行在IRQL PASSIVE_LEVEL上的中间层驱动程序函数可通过调用NDIS_PAGEABLE_FUNCTION宏将其标记为可分页代码。驱动程序设计者应尽可能的将程序代码设计为可分页的,为那些必须驻留内存代码释放系统空间。运行在IRQL PASSIVE_LEVEL的驱动程序函数,当其既不调用运行在IRQL >=DISPATCH_LEVEL的任何函数,也不被运行在IRQL >=DISPATCH_LEVEL的任何函数调用时,可将其标注为可分页的。例如,一个获取自旋锁的函数,而获取自旋锁将促使获取线程提升到 IRQL  DISPATCH_LEVEL上运行。一个运行在IRQL PASSIVE_LEVEL的函数,如ProtocolBindAdapter,如果被标注为可分页的,就不能再调用运行在IRQL >=DISPATCH_LEVEL NDIS的函数。关于运行在IRQL 上的NDIS函数的更多信息,请参阅在线DDK的“Network Drivers Reference”,其中列出了每一个NdisXxx函数的IRQL。
中间层驱动程序的DriverEntry函数以及只在 DriverEntry中调用的代码,应该用NDIS_INIT_FUNCTION宏将其设定为仅用作系统初始化功能。假定 NDIS_INIT_FUNCTION宏标识的代码仅在系统初始化时运行,这样该部分代码将只有在初始化时才会被映射,在DriverEntry返回后, NDIS_INIT_FUNCTION宏标识的这部分代码将被丢弃。

2.2 共享资源的访问同2.3 步

如果驱动程序分配的资源能够被两个驱动程序函数同时共享,或者中间层驱动程序能够运行在SMP(对称多处理)机器上,这样相同的驱动程序函数能够从多个处理器同时访问该资源,那么对这些共享资源的访问必须进行同步。例如,驱动程序维持一个共享队列,使用自旋锁来对队列的访问进行同步,自旋锁在队列创建之前调用NdisAllocateSpinLock进行初始化。
当然,也不必过分地保护共享资源,例如,对于队列,一些读操作不进行串行化也是可以成功执行的。但任何针对队列链接的操作都必须进行同步。自旋锁应该尽量少使用,并且每次都要尽可能缩短其使用的时间。关于自旋锁更深入的讨论可参阅 “Kernel_Mode Drivers Design Guide”。

2.4 中间层驱动程序的DriverEntry函数

为了使加载程序能够准确地识别,必须将中间层驱动程序的初始入口点明确地指定为DriverEntry的形式。所有其他的驱动程序导出函数,像这里所描述的 MiniportXxx和ProtocolXxx函数,由于其地址传给了NDIS,因此在设计时可由开发者任意指定名称。任何内核模式驱动程序 DriverEntry的定义具有以下形式:
NTSTAUS
DriverEntry(
  IN PDRIVER_OBJECT DriverObject,
  IN PUNICODE_STRING RegistryPath
);
如果除了ProtocolXxx之外,驱动程序还导出一组标准的内核模式驱动程序函数,那么必须将这些标准函数的地址写入要传给DriverEntry的驱动程序对象中。
在中间层驱动程序中,DriverEntry至少应该完成以下工作:
调用NdisMInitializeWrapper并保存在NdisWrapperHandle中返回的句柄;
传递上一步保存的句柄,调用NdisIMRegisterLayeredMiniport注册驱动程序的MiniportXxx函数;
如果驱动程序随后要绑定到低层NDIS驱动程序上,则调用NdisRegisterProtocol注册驱动程序的ProtocolXxx函数;
如果驱动程序导出了MiniportXxx和ProtocolXxx函数,那么调用NdisIMAssociateMiniport向NDIS通告有关驱动程序的微端口低边界和协议高边界信息;
DriverEntry能够为中间层驱动程序分配的所有共享资源初始化自旋锁,例如驱动程序用于跟踪运行中的连接和发送任务的构件和内存区。
当DriverEntry 不能为驱动程序分配用于网络I/O操作的所有资源时,它就应该释放先前已经分配的任何资源并返回一个适当的错误状态。例如,如果DriverEntry已经调用了NdisMInitializeWrapper函数,那么当后续操作出错时必须调用NdisTerminateWrapper复位系统状态。
中间层驱动程序的DriverEntry函数能够执行一些全局初始化操作。然而,如果驱动程序提供了在2.4节所描述的,实现对低层设备的打开和绑定功能的 ProtocolBindAdapter函数,那么驱动程序就能够让ProtocolBindAdapter来分配绑定相关的系统资源, ProtocolBindAdapter根据要求为DeviceName设备进行资源分配和绑定操作。DriverEntry必须初始化该包裹程序并注册微端口驱动程序。如果中间层驱动程序导出了一组ProtocolXxx函数的话,也要注册协议驱动程序。
如果中间层驱动程序仅向NDIS导出了一组MiniportXxx函数,只要向NDIS库注册这些函数即可,如下所述。

2.4.1 注册NDIS中间层驱动程序

NDIS 中间层驱动程序必须在DriverEntry函数的环境中向NDIS注册其MiniportXxx函数和ProtocolXxx函数。驱动程序通过调用 NdisIMRegisterLayeredMiniport对MiniportXxx函数进行注册,该调用导出中间层驱动程序的MiniportXxx 函数。当虚拟NIC被初始化时,以及随后当驱动程序将要基于该NIC接收和发送数据包时,注意驱动程序的控制过程。
对于指定的虚拟NIC, NDIS将在NdisIMInitializeDeviceInstance的环境中调用中间层驱动程序的MiniportInitialize函数对其进行初始化操作。如果中间层驱动程序导出了多个虚拟NIC,那么为使其可用于网络请求,驱动程序必须为每一个NIC调用 NdisIMInitializeDeviceInstance函数进行初始化。这样可根据网络业务量,生成相应的数量的虚拟NIC。
如果NDIS中间层驱动程序也导出了一组ProtocolXxx函数,则必须调用相应的NdisRegisterProtocol函数向NDIS库注册这些函数。

2.4.1.1 注册中间层驱动程序的Miniport
中间层驱动程序通过调用NdisIMRegisterLayeredMiniport导出MiniportXxx函数。
NdisIMRegisterLayeredMiniport以如下方式进行声明:
NDIS_STATUS
NdisIMRegisterLayeredMiniport(
 IN NDIS_HANDLE NdisWrapperHandle,
 IN PNDIS_MINIPORT_CHARACTERISTICS MiniportCharacteristics,
 IN UINT CharacteristicsLength,
 OUT PNDIS_HANDLE DriverHandle
);
中间层驱动程序必须保存NdisIMRegisterLayeredMiniport返回的DriverHandle句柄,并且在驱动程序中调用 NdisIMInitializeDeviceInstance函数,请求中间层驱动程序的MiniportInitialize函数对虚拟NIC进行初始化时,将该句柄输入NDIS。当中间层驱动程序成功的绑定到一个或多个低层NIC驱动程序上或者当其绑定在一个非NIC设备驱动程序上后,将调用 NdisIMInitializeDeviceInstance函数,使得中间层驱动程序可以初始化Miniport组件来接受虚拟NIC上的I/O请求。
NdisWrapperHandle句柄是由先前的NdisMInitializeWrapper函数返回的。
中间层驱动程序必须完成以下操作:
用NdisZeroMemory函数零初始化一个NDIS_MINIPORT_CHARACTERISTICS类型的构件;
保存所有驱动程序导出的强制性的和非强制的MiniportXxx函数的地址,并将所有非强制的MiniportXxx入口指针设为NULL;
当其他类型的NDIS驱动程序的有效主版本是0x03、0x04、0x05时,如果要导出任何新的V4.0或 V5.0的MiniportXxx函数,中间层驱动程序的主版本必须是4.0并提供4.0或5.0版的MiniportCharacteristics构件。
对于MiniportCharacteristics,如果驱动程序不用导出MiniportXxx函数,则必须将其设为NULL,但是如果要导出函数的话,则必须将其设为某个有效的MiniportXxx函数地址值。
HaltHandler
当低层NIC超时并且NDIS已经中止了网卡驱动程序时,或者操作系统正在执行一个可控的系统关闭操作时,NDIS将调用该函数。
InitializeHandler
作为中间层驱动程序调用NdisIMInitializeDeviceInstance初始化微端口的结果,调用该函数对虚拟网卡进行初始化。
QueryInformationHandler
该函数接收OID_XXX请求,这个请求来自于高层驱动程序(用NdisRequestQueryInformation请求类型作参数,调用NdisRequest)。
ResetHandler
在高层协议驱动程序调用NdisReset的指示下,NDIS能够调用中间层驱动程序的MiniportReset函数。然而,协议驱动程序并不启动复位功能,通常,NDIS启动低层网卡驱动程序复位操作并调用中间层驱动程序的ProtocolStatus和ProtocolStatusComplete函数通知中间层驱动程序低层微端口正在复位网卡。
SetInformationHandler
该函数接收OID_XXX请求,这个请求来自于高层驱动程序(用NdisRequestSetInformation请求类型作参数,调用NdisRequest)。
SendHandler
NDIS 调用该函数向低层网卡(或设备)驱动程序发送单个数据包。如果中间层驱动程序不支持MiniportSendPackets函数,那么 MiniportSend函数(或MiniportWanSend函数)是必须提供的。除非中间层驱动程序总是基于那些每次只发送单一数据包或将自身绑定到低层WAN NIC的驱动程序,否则MiniportSendPackets函数应该总是以SendPacketsHander方式提供,而不是以该 SendHander处理程序方式提供,关于这方面的更多讨论请参阅2.9节。
SendPacketsHander
该函数接收用于指定网上传输数据包的包描述符指针数组。除非中间层驱动程序绑定到低层WAN NIC驱动程序上并提供了MiniportWanSend函数,否则驱动程序应提供对MiniportSendPackets而不是 MiniportSend函数支持。换句话说,不管中间层驱动程序是基于每次只能传送单个数据包的网卡驱动程序;还是基于每次可以传送多个数据包的网卡驱动程序,也不管中间层驱动程序是基于每次只能传送单个数据包的协议驱动程序;还是基于每次可以传送多个数据包的协议驱动程序, MiniportSendPackets函数都能实现最好的性能,关于这方面的更多讨论可参阅2.9节。
TransferDataHandler
该函数用于传输在前视缓冲区中没有指示的接收数据包的剩余部分,该前视缓冲区由中间层驱动程序传递给NdisMXxxIndicateReceive函数。这个被指示的数据包可以是中间层驱动程序的ProtocolReceive函数或者是ProtocolReceivePackets处理程序接收的转换数据包。如果中间层驱动程序通过调用(除NdisMWanIndicateReceive之外)NdisMXxxIndicateReceive函数向上层驱动程序指示接收数据包,那么该处理程序是必须提供的。如果中间层驱动程序总是通过调用NdisMIndicateReceivePacket向上层驱动程序指示接收数据包,则不必要提供MiniportTransferData函数。
ReturnPacketHandler
该函数接收返回包描述符(该包描述符先前通过NdisMIndicateReceivePacket调用向高层指示),从而释放指示给高层驱动程序的资源的控制权。在高层驱动程序处理完所有指示之后,中间层驱动程序分配的描述符及所描述的资源将返回给MiniportReturnPacket函数。当然,如果中间层驱动程序总是通过调用介质相关的NdisMXxxIndicateReceive函数向上层指示数据包,或者在调用 NdisMIndicateReceivePacket之前总是将OOB数据块(与每一个描述符相关的)状态设置为 NDIS_STATUS_RESOUCES,则不必提供MiniportReturnPacket函数。
CheckForHangHandler
该函数以NDIS规定的时间间隔调用,或者以中间层驱动程序规定的时间间隔运行,二者只居其一。如果提供了该处理程序,那么 MiniportCheckForHang函数每两秒钟被调用一次(或者按驱动程序要求的间隔调用)。关于MiniportCheckForHang函数的更多信息可参见在线DDK的“Network Drivers Reference”或者该手册的第二部分。通常情况下,由于驱动程序无法确定低层网卡是否悬挂,NDIS中间层驱动程序并不提供对 MiniportCheckForHang函数的支持。如果驱动程序基于状态不能到达NDIS的非NDIS驱动程序,中间层驱动程序可能会提供对该处理程序的支持。
由于驱动程序并不管理中断设备,不为使用中的IRQL分配缓冲区,或者因为NDIS并不调用MiniportReconfigure函数(在ReconfigureHandler情况下),因此中间层驱动程序不会提供以下的几个微端口处理程序函数。
DisableInterruptHandler
EnableInterruptHandler
HandleInterruptHandler
ISRHandler
AllocateCompleteHandler
ReconfigureHandler

2.4.1.2 注册中间层驱动程序的协议
中间层驱动程序通过调用NdisRegisterProtocol向NDIS注册ProtocolXxx函数。
NdisRegisterProtocol以如下方式进行声明:
VOID
NdisRegisterProtocol(
OUT PNDIS_STATUS Status,
OUT PNDIS_HANDLE NdisProtocolHandler,
IN NDIS_PROTOCOL_CHARACTERISTICS ProtocolCharacteristics,
IN UINT CharacteristicsLength
);
在调用NdisRegisterProtocol函数之前,中间层驱动程序必须完成以下操作:
零初始化一个NDIS_PROTOCOL_CHARACTERISTICS类型的结构。中间层驱动程序能够使用4.0或者5.0版的ProtocolCharacteristics结构。协议驱动程序必须支持即插即用功能,因此NDIS不再支持3.0版的协议驱动程序。
保存所有驱动程序支持的强制性的和非强制的ProtocolXxx函数的地址;
该调用的返回句柄NdisProtocolHandler对中间层驱动程序是不透明的,中间层驱动程序必须保存该句柄,并在将来NDIS中间层驱动程序的协议部分的函数调用中作为输入参数传递,例如,打开低层适配器的函数调用。
2.4.1.2.1 注册下边界面向无连接的中间层驱动程序的ProtocolXxx函数
下边界面向无连接中间层驱动程序能够导出的(包括可选的和必须的)协议处理程序函数如下所列:
BindAdapterHandler
这是一个必须提供的函数。NDIS调用该函数请求中间层驱动程序绑定到低层NIC或虚拟NIC上,NIC名作为该处理程序的一个参数传递。关于动态绑定的更多的信息参见2.4节.
UnbindAdapterHandler
这是一个必须提供的函数。NDIS调用ProtocolUnbindAdapter释放对低层NIC或虚拟NIC的绑定,网卡名作为该处理程序的一个参数传递。当绑定成功关闭时,ProtocolUnbindAdapter将调用NdisCloseAdapter函数并释放相关资源。
OpenAdapterCompleteHandler
这是一个必须提供的函数。如果中间层驱动程序对NdisOpenAdapter的调用返回NDIS_STATUS_PENDING,则接着调用ProtocolOpenAdapterComplete来完成绑定。
CloseAdapterCompleteHandler
这是一个必须提供的函数。如果中间层驱动程序对NdisCloseAdapter的调用返回NDIS_STATUS_PENDING,则接着调用ProtocolCloseAdapterComplete来完成绑定释放。
ReceiveHandler
这是一个必须提供的函数。ProtocolReceive函数以指向包含网络接收数据的前视缓冲区的指针为参数被调用执行。如果该缓冲区包含的不是完整的网络数据包,ProtocolReceive以数据包描述符作为参数,调用NdisTransferData接收该数据包的剩余部分。如果低层驱动程序调用 NdisMIndicateReceivePacket指示接收数据包,那么传给ProtocolReceive函数的前视缓冲区将总是完整的网络数据包。
ReceivePacketHandler
这是一个可选函数。如果中间层驱动程序所基于的NIC驱动程序指示的是数据包描述符指针数组,或者调用NdisMIndicateReceivePacket函数指示接收带外数据,那么驱动程序应提供 ProtocolReceivePacket函数。如果开发者不能确定中间层驱动程序的执行环境,也应提供函数,因为在能够产生多包指示的低层NIC驱动程序上,中间层驱动程序将获得更好的性能。
ReceiveCompleteHandler
这是一个必须提供的函数。当先前指示给ProtocolReceive 函数的数据包被处理后,将调用ProtocolReceiveComplete函数。
TransferDataCompleteHandler
如果ProtocolReceive要调用NdisTransferData函数,则必须提供该处理程序。如果复制接收数据包剩余部分的 NdisTransferData函数调用返回NDIS_STATUS_PENDING,那么当传输操作完成后,将调用 ProtocolTransferDataComplete函数。
ResetCompleteHandler
这是一个必须提供的函数。当 NdisReset函数(返回NDIS_STATUS_PENDING)调用启动的复位操作完成时,ProtocolResetComplete函数将被调用。通常情况下,中间层驱动程序并不调用NdisReset,但由于上层驱动程序可能会调用该函数,所以中间层驱动程序可能只是向低层NDIS驱动程序转发复位请求而已。
RequestCompleteHandler
这是一个必须提供的函数。当NdisRequest函数(返回NDIS_STATUS_PENDING)调用启动的查询或设置操作完成时,ProtocolRequestComplete函数将被调用。
SendCompleteHandler
这是一个必须提供的函数。对每一个调用NdisSend函数传输的数据包,当其返回NDIS_STATUS_PENDING作为发送状态时,将调用 ProtocolSendComplete函数完成发送操作。如果调用NdisSendPackets发送一组数据包,那么对于每一个传送给 NdisSendPackets的数据包,ProtocolSendComplete将被调用一次。中间层驱动程序仅仅根据送给 ProtocolSendComplete的状态参数就能确定调用NdisSendPackets函数的发送操作的状态。
StatusHandler
这是一个必须提供的函数。NDIS用低层NIC驱动程序发起的状态通知来调用ProtocolStatus函数。
StatusCompleteHandler
这是一个必须提供的函数。NDIS调用ProtocolStatusComplete函数来指示状态改变操作已经完成,该状态先前被指示给ProtocolStatus函数。
PnPEventHandler
这是一个必须提供的函数。NDIS调用ProtocolPnPEvent来指示即插即用事件或电源管理事件。更多信息可参见2.9节。
UnloadHandler
这是一个可选函数。NDIS调用ProtocolUnload函数来响应用户卸载中间层驱动程序的请求。对于每一个绑定的适配器,NDIS在调用 ProtocolUnbindAdapter之后,将调用ProtocolUnload函数卸载驱动程序。ProtocolUnload执行驱动程序决定的清除操作。
2.4.1.2.2 注册下边界面向连接的中间层驱动程序的ProtocolXxx函数
 下边界面向连接的中间层驱动程序必须注册如下的面向无连接的和面向连接的微端口所共有的协议处理程序函数:
BindHandler
UnbindHandler
OpenAdapterCompleteHandler
CloseAdapterCompleteHandler
ReceiveCompleteHandler
ResetCompleteHandler
RequestCompleteHandler
StatusCompleteHandler
PnPEventHandler
这些函数已经在上一小节作了汇总。
下边界面向连接的中间层驱动程序还必须注册如下的面向连接协议函数:
CoSendCompleteHandler
这是一个必须提供的函数。对于传给NdisCoSendPackets的每一个数据包都要调用一次ProtocolCoSendComplete函数。中间层驱动程序仅仅根据送给ProtocolCoSendComplete的状态参数就能确定调用NdisCoSendPackets的发送操作的状态。
CoStatusHandler
这是一个必须提供的函数。NDIS用低层NIC驱动程序发起的状态通知来调用ProtocolCoStatus函数。
CoReceivePacketsHandler
这是一个必须提供的函数。当绑定的面向连接NIC驱动程序或者集成微端口呼叫管理器(MCM)通过调用 NdisMCoIndicateReceivePackets指示一个指针数组时,NDIS将调用中间层驱动程序的 ProtocolCoReceivePacketHandler函数。
CoAfRegisterNotifyHandler
如果中间层驱动程序是一个使用呼叫管理器或MCM驱动程序的呼叫管理服务的面向连接客户,那么就必须注册ProtocolCoAfRegisterNotify函数,该函数用来确定中间层驱动程序能否使用呼叫管理器或MCM(已经通过注册地址族,公布其服务)的服务。

2.5 中间层驱动程序的动态绑定


中间层驱动程序必须提供ProtocolBindAdapter和ProtocolUnbindAdapter函数以支持对低层NIC的动态绑定。当NIC 可用时,NDIS调用中间层驱动程序(能够绑定到NIC)的ProtocolBindAdapter函数实现动态绑定操作。
 VOID
 ProtocolBindAdapter(
  OUT PNDIS_STATUS  Status,
  IN NDIS_HANDLE  BindContext,
  IN PNDIS_STRING  DeviceName,
  IN PVOID   SystemSpecific1,
  IN PVOID   SystemSpecific2
 );
BindContext句柄代表绑定请求的NDIS环境,中间层驱动程序必须保存该句柄,并且在中间层驱动程序完成绑定相关操作,并准备接受发送请求时,将该句柄作为NdisCompleteBindAdapter的参数返回NDIS。
绑定时的操作包括为该绑定分配NIC相关的环境区域并进行初始化,接着调用NdisOpenAdapter绑定到DeviceName参数指定的适配器。 DeviceName可以是低层NIC驱动程序管理的NIC,也可以是介于被调用的中间层驱动程序和管理适配器的NIC驱动程序之间,由中间层NDIS驱动程序导出的控制传输请求的虚拟NIC。通常情况下,可能仅有一个基于NIC驱动程序的中间层NDIS驱动程序,实现早期的高层协议驱动程序支持的介质格式和低层NIC驱动程序支持的介质格式之间的转换。
注意,中间层驱动程序向NdisOpenAdapter传递的DeviceName必须与先前向ProtocolBindAdapter函数传递的DeviceName(一个Unicode字符串缓冲区指针)相同,驱动程序不能复制该指针并将指针副本传递给NdisOpenAdapter函数。
中间层驱动程序能够在已分配的绑定相关环境区域或者另一个驱动程序可访问位置保存 BindContext。如果NdisOpenAdapter返回NDIS_STATUS_PEDDING,则必须保存BindContext值,在这种情况下,中间层驱动程序直到打开适配器的操作完成,并且其ProtocolOpenAdapterComplete函数已调用完成,才能调用 NdisCompleteBindAdapter函数完成绑定工作。BindContext必须从某个已知位置获得,并由 ProtocolOpenAdapterComplete传递给NdisCompleteBindAdapter函数。
如果中间层驱动程序将适配器相关信息存入注册表,那么SystemSpecific1将指向注册表路径,该值将被传给NdisOpenProtocolConfiguration函数以获取用于读写适配器信息的句柄。
SystemSpecific2预留系统使用。
如果中间层驱动程序要将内入数据包从一种介质格式转化为另一种格式,那么ProtocolBindAdapter能够分配数据包描述符池和每一个绑定所需的缓冲描述符。关于分配和管理数据包的要求可参阅2.5节。另外,如果中间层驱动程序仅仅用Protocol(Co)Receive函数接收内入数据,那么驱动程序应该分配数据包池和缓冲池来复制接收的数据。

2.5.1 打开中间层驱动程序下层的适配器

ProtocolBindAdapter 函数通过DeviceName参数值打开低层NIC或虚拟网卡,从而建立到低层NIC驱动程序的绑定,它也能够从注册表中读取所要求的附加配置信息。 NdisOpenProtocolConfiguration用于获取指向中间层驱动程序存储适配器相关信息的注册表主键句柄。中间层驱动程序通过调用 NdisOpenConfigurationKeyByIndex函数或者NdisOpenConfigurationKeyByName函数打开并获取主键(由NdisOpenProtocolConfiguration函数打开)下的子键句柄。然后,中间层驱动程序能够调用NdisRead (Write)Configuration函数读写注册表主键或子键下的相关信息。NdisRead(Write)Configuration函数在在线 DDK的“Network Drivers Reference”中有详细的描述。
典型地,ProtocolBindAdapter使用环境区域(代表对DeviceName绑定)存储所有绑定相关信息(与绑定适配器相关联的)。
绑定操作最终由NdisOpenAdapter函数调用来实现,该函数声明如下:
 VOID
 NdisOpenAdapter(
  OUT PNDIS_STATUS  Status,
  OUT PNDIS_STATUS  OpenErrorStatus,
  OUT PNDIS_HANDLE NdisBindingHandle,
  OUT PUNIT   SelectedMediumIndex,
  IN PNDIS_MEDIUM  MediumArray,
  IN UINT   MediumArraySize,
  IN NDIS_HANDLE  NdisProtocolHandle,
  IN NDIS_HANDLE  ProtocolBindingContext,
  IN PNDIS_STRING  AdapterName,
  IN UINT   OpenOptions,
  IN PSTRING   AddressingInformation
 );
中间层驱动程序在ProtocolBindingContext中传递代表绑定相关环境区域(已经分配并初始化)的句柄。NDIS在未来与绑定相关的调用中,将向中间层驱动程序返回该环境。例如,在对Protocol(Co)Receive或Protocol(Co)Status函数的调用中。相似地,当 NdisOpenAdapter 调用返回时,NDIS将向中间层驱动程序传递该NdisProtocolHandle句柄。驱动程序必须保存该句柄,通常保存在绑定相关的环境区域,在以后与该绑定相关的调用中,中间层驱动程序将向NDIS传送该句柄,例如NdisSend或Ndis(Co)SendPackets函数调用。
ProtocolBindAdapter 也能够通过MediumArray传递所支持的介质类型。如果NdisOpenAdapter函数调用成功,低层NIC驱动程序将选择一种其所支持的介质类型,并通过SelectedMediumHandle返回其从MediumArray中所选介质的索引。
ProtocolBindAdapter可以通过NdisProtocolHandle传递前面对NdisRegisterProtocol函数成功调用所返回的值。
如果NdisOpenAdapter返回了一个错误,那么中间层驱动程序应该收回为绑定相关环境区域分配的内存空间,并释放为绑定分配的其他所有资源。典型地,ProtocolBindAdapter通过调用NdisWriteErrorLogEntry,用适当的描述信息记录任何失败的绑定操作。

2.5.2 微端口(Miniport)初始化

当成功打开低层NIC并准备在虚拟NIC或NIC上接收请求和发送数据之后,ProtocolBindAdapter将对 NdisIMIntializeDeviceInstance进行一次或多次调用来请求对一个或多个网卡进行初始化操作。 NdisIMIntializeDeviceInstance调用中间层驱动程序的MiniportInitialize函数执行指定网卡的初始化。当 MiniportInitialize函数返回后,上层NDIS驱动程序就能够进行对中间层驱动程序的虚拟NIC(s)的绑定操作了。
 MiniportInitialize 函数必须分配和初始化虚拟NIC相关的环境区域。作为初始化操作的一部分,MiniportInitialize必须用相应的环境句柄调用 NdisMSetAttributeEx函数,NDIS将在以后对MiniportXxx函数调用中传递该环境句柄。 MiniportInitialize也必须设置AttributeFlags参数(将被传递给NdisMSetAttributeEx函数)中的 NDIS_ATTRIBUTE_INTERMEDIATE_DRIVER标记。中间层驱动程序通过设置 NDIS_ATTRIBUTE_INTERMEDIATE_DRIVER标记来标识NDIS驱动程序类型。
另外,如果当中间层驱动程序队列中的发送和请求操作超时时,不想让NDIS调用MiniportCheckForHang(或MiniportReset)函数,那么 MiniportInitialize必须对AttributeFlags参数(将被传递给NdisMSetAttributeEx函数)中的 NDIS_ATTRIBUTE_IGNORE_PACKET_TIMEOUT和 NDIS_ATTRIBUTE_IGNORE_REQUEST_TIMEOUT标记进行设置。通过设置超时标记来通知NDIS将由中间层驱动程序负责处理虚拟NIC超时操作。因为中间层驱动程序并不操纵低层NIC,因此它无法控制到底花了多长时间完成未决发送和请求操作,驱动程序通常既不提供 MiniportCheckForHang函数也不处理虚拟NIC超时。
然而,如果中间层驱动程序已经注册了 CheckForHangHandler句柄的入口点,并且没有请求NDIS忽略数据包和请求超时,也没有改变超事间隔,那么,在默认情况下,将每隔两秒对MiniportCheckForHang函数进行一次调用。如果MiniportCheckForHang函数返回TRUE,驱动程序将调用 MiniportReset函数。如果驱动程序支持MiniportCheckForHang函数,那么可以通过调用 NdisMSetAttributeEx函数来明确指定一个不同的TimeInSeconds值,改变默认的两秒调用间隔设置。
中间层驱动程序必须像一个非串行驱动程序那样进行操作,并且通过设置将要传递给NdisMSetAttributeEx函数的AttributeFlags参数中的 NDIS_ATTRIBUTE_DESERIALIZE标记来进行注册。非串行驱动程序对MiniportXxx函数的操作进行串行化,并且对所有引入的发送数据包在内部进行排队,而不是依靠NDIS来保存发送队列。
中间层驱动程序也必须设置AttributeFlags参数(将被传给NdisMSetAttributeEx函数)中的NDIS_ATTRIBUTE_NO_HALT_SUSPEND标记,防止NDIS在低层微端口过渡到低功耗状态之前中断驱动程序。
中间层驱动程序要确保所保持的状态信息是完全初始化过的。如果中间层驱动程序请求发送相关的资源(例如MiniportSend或 MiniportSendPackets将要向相邻低层发送的数据包的包描述符),那么如果在调用 NdisIMInitializeDeviceInstance之前,ProtocolBindAdapter还没有分配数据包池,则分配数据包池。

2.5.3 中间层驱动程序查询和设置操作

当成功绑定到低层NIC并完成虚拟NIC(s)的初始化操作之后,中间层驱动程序就可以查询低层NIC驱动程序的操作特性,设置其内部状态,也可以协商一些参数(如为低层NIC驱动程序预留的缓冲区大小等)。下边界面向无连接的中间层驱动程序通过调用NdisRequest实现该功能,下边界面向连接的中间层驱动程序则通过调用Ndis(Co)Request函数实现该功能。
中间层驱动程序也能够接收来自协议驱动程序的MiniportQueryInformation和MiniportSetInformation函数的查询和设置请求,它要么响应这些请求要么将这些请求传给低层驱动程序。
在在线DDK的“Network Drivers Reference”中包含了中间层驱动程序开发者所关心的全部通用的、面向连接的、非介质相关的OID,以及介质相关的OID的详细信息。接下来将讨论几个标准且常用的通用分类OID、面向连接OID以及一些介质相关OID。
2.5.3.1 发布设置和查询请求
 典型地,下边界面向无连接的中间层驱动程序通过发布OID_GEN_MAXIMUM_FRAME_SIZE请求,查询低层NIC驱动程序所支持的帧最大长度,该请求返回值不包括帧头部分的长度。
  下边界面向无连接的中间层驱动程序能够用OID_GEN_MAXIMUM_TOTAL_SIZE请求,查询绑定从而确定低层NIC驱动程序所管理的NIC 所能接纳的最大数据包,中间层驱动程序必须对发送数据包进行设置,使其满足这一尺寸要求。如果上层驱动程序发送一个超出NIC驱动程序(中间层驱动程序所绑定的)所能支持尺寸的数据包,那么将会出现错误。
下边界面向无连接的中间层驱动程序能够用OID_GEN_CURRENT_LOOKAHEAD 请求,查询前视数据缓冲区的大小。如果中间层驱动程序提交这一查询请求,NDIS将返回对低层NIC驱动程序的给定绑定的最新前视缓冲区尺寸。如果中间层驱动程序进行相应的设置请求,那么它将指示所提出的前视缓冲区尺寸,但中间层驱动程序并不能保证低层NIC驱动程序能够按照所指示尺寸设置前视缓冲区。
下边界面向无连接的中间层驱动程序用OID_GEN_LINK_SPEED请求,查询低层NIC驱动程序的链接速率,并用该请求的返回值修改其保存的内部超时设置。下边界面向连接的中间层驱动程序用OID_GEN_CO_LINK_SPEED请求,查询低层NIC驱动程序的链接速率,并且也能够用 OID_GEN_CO_LINK_SPEED请求,设置低层NIC驱动程序的链接速率。
如果中间层驱动程序绑定到WAN NIC驱动程序上的,那么直到接收到一个连结指示(指示本地节点和远程节点连结建立)时才能确定链接速率。关于链接指示的描述请参阅第二部分第八章的“广域网微端口驱动程序做出的指示”。
中间层驱动程序也必须确定低层NIC驱动程序的操作特性的设置,下边界面向无连接的中间层驱动程序用OID_GEN_MAC_OPTIONS请求来实现这一功能,下边界面向连接的中间层驱动程序用OID_GEN_CO_MAC_OPTIONS请求来实现这一功能。
下边界面向无连接的中间层驱动程序通常发布的是OID_GEN_MAXIMUM_SEND_PACKETS查询(特别是在中间层驱动程序导出了 MiniportSendPackets函数情况下),驱动程序能够在以后响应高层驱动程序的OID_GEN_MAXIMUM_SEND_PACKETS 查询时,向上层传递该查询的返回值。
中间层驱动程序也能够通过介质相关OID查询相关介质的当前地址,例如,下边界面向无连接的中间层驱动程序可以发布OID_WAN_CURRENT_ADDRESS、OID_802_3_CURRENT_ADDRESS、 OID_802_5_CURRENT_ADDRESS或者OID_FDDI_LONG_CURRENT_ADDRESS查询,下边界面向连接的中间层驱动程序可以OID_ATM_WAN_CURRENT_ADDRESS查询。
如果必要,中间层驱动程序能够发布一个设置请求,来通知NDIS其操作特性的有关信息。下边界面向无连接的中间层驱动程序用OID_GEN_PROTOCOL_OPTIONS调用NdisRequest函数来实现这一功能,而下边界面向连接的中间层驱动程序用OID_GEN_CO_PROTOCOL_OPTIONS调用NdisRequest来实现这一功能。
绑定到支持WAN的NIC的中间层驱动程序同时必须完成以下设置信息请求:
用OID_WAN_PROTOCOL_TYPE请求,通知低层NIC驱动程序其协议的类型,该类型以单字节的网络层协议标识符形式提供;
用OID_WAN_HEADER_FORMAT请求,通知低层NIC驱动程序其发送数据包的头格式。

2.5.3.2 响应设置和查询请求
因为NDIS中间层驱动程序可被高层NDIS驱动程序绑定,所以它也可以接收MiniportQueryInformation和 MiniportSetInformation函数的查询和设置请求。在某些情况下,中间层驱动程序所起的作用仅仅是将这些请求传递给低层驱动程序。另外,当这些请求是关于其在上边界导出的介质时,也能够对这些查询和设置请求进行响应。注意中间层驱动程序必须将其从上层NDIS驱动程序接收到的 OID_PNP_XXX请求,传递给低层Miniport驱动程序处理。
通常情况下,中间层驱动程序所接收到的通用OID,与其向低层NIC驱动程序提交的OID是相似甚至相同的,中间层驱动程序所接收到的介质相关OID将是高层驱动程序所期望的介质类型。

2.5.4 作为面向连接客户程序注册中间层驱动程序

下边界面向连接的中间层驱动程序必须作为面向连接客户程序进行注册。面向连接客户程序使用呼叫管理器或集成微端口呼叫管理器(MCM)的安装调用(call -setup)和卸载(tear-down)服务完成相关功能,也可以使用面向连接的微端口或MCM的接收和发送功能进行发送和接收数据操作。关于面向连接通信的更多信息请参阅第一部分第四章。
当呼叫管理器或MCM从ProtocolBindAdapter函数中调用Ndis(M) CmRegisterAddressFamily注册地址族时,NDIS将调用绑定上的所有协议驱动程序的 ProtocolCoRegisterAfNotify函数。如果中间层驱动程序在注册协议时调用了 ProtocolCoRegisterAfNotify函数,那么NDIS将对中间层驱动程序的ProtocolCoRegisterAfNotify函数进行调用。
如果ProtocolCoRegisterAfNotify函数确定中间层驱动程序能够使用呼叫管理器或者MCM(注册地址族的)的服务,那么它将为客户的每一个AF分配相应的环境区域并调用NdisClOpenAddressFamily函数注册一组客户提供的函数。
NdisClOpenAddressFamily定义如下:
NDIS_STATUS
NdisClOpenAddressFamily(
IN NDIS_HANDLE NdisBindingHandle,
IN PCO_ADDRESS_FAMILY AddressFamily,
IN NDIS_HANDLE ProtocolAfContext,
IN PNDIS_CLIENT_CHARACTERISTICS ClCharacteristics,
IN UINT SizeOfClCharactertistics,
OUT PNDIS_HANDLE NdisAfHandle
);
在调用NdisClOpenAddressFamily之前,中间层驱动程序必须完成以下操作:
将PNDIS_CLIENT_CHARACTERISTICS类型的ClCharacteristics结构体置零,该结构的最新版本为5.0;
存储驱动程序支持的ProtocolXxx客户函数的地址。
该调用的返回值NdisAfHandle对中间层驱动程序是不透明的,中间层驱动程序必须保存该句柄并在以后中间层驱动程序的协议部分调用中作为参数传递给NDIS。例如,注册SAP的NdisClRegisterSap函数调用。
中间层驱动程序必须用NdisClOpenAddressFamily注册的客户函数有:
ClCreateVcHandler
设定呼叫器的ProtocolCoCreateVc函数的入口点。
ClDeleteVcHandler
设定呼叫器的ProtocolCoDeleteVc函数的入口点。
ClRequestHandler
设定呼叫器的ProtocolCoRequest函数的入口点。
ClRequestCompleteHandler
设定呼叫器的ProtocolCoRequestComplete函数的入口点。
ClOpenAfCompleteHandler
设定呼叫器的ProtocolClOpenAfComplete函数的入口点。
ClCloseAfCompleteHandler
设定呼叫器的ProtocolClCloseAfComplete函数的入口点。
ClRegisterSapCompleteHandler
设定呼叫器的ProtocolClRegisterSapComplete函数的入口点,客户程序用该函数接收远程机器的呼叫。
ClDeRegisterSapCompleteHandler
设定呼叫器的ProtocolClDeRegisterSapComplete函数的入口点。
ClMakeCallCompleteHandler
设定呼叫器的ProtocolClMakeCallComplete函数的入口点,客户程序用该函数对远程机器作外出呼叫。
ClModifyCallQoSCompleteHandler
设定呼叫器的ProtocolClModifyCallQoSComplete函数的入口点,客户程序用该函数对已经建立的VC服务质量进行动态修改,或者当准备一个内入呼叫时,用该函数和呼叫管理器协商建立QoS。
ClCloseCallCompleteHandler
设定呼叫器的ProtocolClCloseCallComplete函数的入口点。
ClAddPartyCompleteHandler
设定呼叫器的ProtocolClAddPartyComplete函数的入口点,客户程序用该函数为对远程机器的外出呼叫建立点对多点的VCs。
ClDropPartyCompleteHandler
设定呼叫器的ProtocolClDropPartyComplete函数的入口点。
ClIncomingCallHandler
设定呼叫器的ProtocolClIncomingCall函数的入口点,客户程序用该函数接收远程机器的呼叫。
ClIncomingCallQoSChangeHandler
设定呼叫器的ProtocolClIncomingCallQoSChange函数的入口点,客户程序用该函数接收来自远程机器的调用,在该远程机器上发送客户程序可以动态地改变QoS。
ClIncomingCloseCallHandler
设定呼叫器的ProtocolClIncomingCloseCall函数的入口点。
ClIncomingDropPartyHandler
设定呼叫器的ProtocolClIncomingDropParty函数的入口点。
ClCallConnectedHandler
设定呼叫器的ProtocolClCallConnected函数的入口点,客户程序用该函数接收远程机器的呼叫。
即使中间层驱动程序不支持内入呼叫、外出呼叫或者“点—多点”连接,当调用NdisClOpenAddressFamily时,也必须设置 ProtocolCl/CoXxx函数调用的NDIS_CLEINT_CHARACTERISTICS结构的每一个ClXxx参数成员,对于那些中间层驱动程序不支持的面向连接函数子集,ProtocolCl/CoXxx函数将只是简单地返回NDIS_STATUS_NOT_SUPPORTED值。

2.6 中间层驱动程序数据包管理

中间层驱动程序从高层驱动程序接收数据包描述符,并在网络上发送,该包描述府与一个或多个链式数据缓冲区相关联。中间层驱动程序能够对数据进行重新打包,并使用新的数据包描述符进行数据传输,也可以直接将数据包传递给低层驱动程序,如果驱动程序下边界面向无连接,可调用NdisSend或 NdisSendPackets函数完成该功能,如果驱动程序下边界是面向连接的,可调用NdisCoSendPackets函数完成此项功能。中间层驱动程序也可以进行一些操作改变链式缓冲区的内容,或者调整内入数据包相对于其他发送任务的发送次序或发送定时。但是,即使中间层驱动程序只是向下层传递上层引入的数据报,例如,仅仅只是对数据包进行计数,也必须分配新的数据包描述符,并且要管理部分或者全部新的包结构。
每一个中间层驱动程序都必须分配自己的包描述符来代替高层的数据包描述符。如果中间层驱动程序要把数据包从一种格式转化为另一种格式,也必须分配缓冲区描述符来映射用于复制转配数据的缓冲区,该缓冲区由中间层驱动程序进行分配。如果有与复制的包描述符相关的OOB数据,那么可以将这些数据复制到与包描述符(中间层驱动程序分配的)相关的新OOB数据块,其过程是,首先,用NDIS_OOB_DATA_FROM_PACKET宏获取OOB数据区的指针,然后,调用 NdisMoveMemory将其内容移入与新包描述符相关的OOB数据区。该驱动程序也能够用NDIS_GET_PACKET_XXX或 NDIS_SET_PACKET_XXX宏从与老的包描述符相关的OOB数据区中,读取相关的内容,并写入与新包描述符相关的OOB数据区。
包描述符通过调用以下NDIS函数进行分配:
调用NdisAllocatePacketPool或者NdisAllocatePacketPoolEx,为固定尺寸包描述符(由呼叫器指定数量)分配并初始化一组非可分页池;
调用NdisAllocatePacket函数,从NdisAllocatePacketPool(Ex)已经分配的池中分配包描述符;
根据中间层驱动程序目的的不同,驱动程序能够对引入包描述符连接的缓冲区进行重新打包。例如,中间层驱动程序可以在接下来的情况下分配包缓冲池、对引入包数据重新打包:
如果中间层驱动程序从高层协议驱动程序接收到的数据缓冲区,比低层介质能够发送的单个缓冲区更大,那么中间层驱动程序必须将引入的数据缓冲分割成更小的、满足低层发送要求的数据缓冲。
中间层驱动程序在将发送任务转交低层驱动程序之前,可以通过压缩或加密数据方式来改变内入数据包的长度。
调用以下NDIS函数分配上面所要求的缓冲区:
用NdisAllocateBufferPool获取用于分配缓冲区描述符的句柄;
用NdisAllocateMemory或NdisAllocateMemoryWithTag分配缓冲区;
用NdisAllocateBuffer分配和设置缓冲区描述符,映射由NdisAllocateMemory(WithTag)分配的缓冲区,并链接到NdisAllocatePacket分配的包描述符上。
驱动程序可以通过调用NdisChainBufferAtBack或NdisChainBufferAtFront函数,将缓冲区描述符和包描述符进行链接。调用NdisAllocateMemory(WithTag)返回的虚拟地址和缓冲区长度,将被传递给NdisAllocateBuffer函数来初始化其所映射的缓冲区描述符。
符合典型要求的包描述符能够在驱动程序初始化时根据要求进行分配,也可以通过 ProtocolBindAdapter函数调用来实现。如果必要或者出于性能方面的考虑,中间层驱动程序开发者可以在初始化阶段,分配一定数量的包描述符和由缓冲区描述符映射的缓冲区,这样,就为ProtocolReceive复制内入数据(将向高层驱动程序指示)预先分配了资源,也为 MiniportSend或MiniportSendPackets向相邻低层驱动程序传递引入的发送数据包,准备了可用的描述符和缓冲区。
如果在中间层驱动程序复制接收/发送数据到一个或多个缓冲区时,最末的一个缓冲的实际数据长度比缓冲区的长度小,那么,中间层驱动程序将调用 NdisAdjustBufferLength把该缓冲区描述符调节到数据的实际长度。当该包返回到中间层驱动程序时,应再次调用该函数将其长度调节到完整缓冲区的实际尺寸。
下边界面向无连接的中间层驱动程序能够通过ProtocolReceivePacket函数,从低层NIC驱动程序以完整数据包形式接收内入数据,该数据包由NDIS_PACKET类型的包描述符指定,也能够通过将内入数据指示给ProtocolReceive函数,并将数据复制到中间层驱动程序提供的数据包中。下边界面向连接的中间层驱动程序总是用ProtocolCoReceivePacket函数,从低层NIC驱动程序接收数据作为一个完整的数据包。
在如下情况下,中间层驱动程序能够保持对接收数据包的所有权:
当下边界面向无连接的中间层驱动程序向ProtocolReceivePacket函数指示完整数据包时;
当下边界面向连接的中间层驱动程序向ProtocolCoReceivePacket函数指示数据包时,其中NDIS_PACKET_OOB_DATA的Status成员设置为除NDIS_STATUS_RESOURCES以外的任何值。
在这些情况下,中间层驱动程序能够保持对该包描述符和其所描述的资源的所有权,直到所接收数据处理完毕,并调用NdisReturnPackets函数将这些资源返还给低层驱动程序为止。如果ProtocolReceivePacket向高层驱动程序传递其所接收的资源,那么至少应该用中间层驱动程序已经分配的包描述符替代引入包描述符。
根据中间层驱动程序目的的不同,当其从低层驱动程序接收完整数据包时,将有几种不同的包管理策略。例如,以下是几种可能的包管理策略:
复制缓冲区内容到中间层驱动程序分配的缓冲区中,该缓冲区被映射并链接到一个新的包描述符,向低层驱动程序返回该输入包描述符,然后可以向高层驱动程序指示新的数据包;
创建新的包描述符,将缓冲区(与被指示包描述符相关联)链接到新的包描述符,然后将新的包描述符指示给高层驱动程序。当高层驱动程序返回包描述符时,中间层驱动程序必须拆除缓冲区与包描述符间的链接,并将这些缓冲区链接到最初从低层驱动程序接收到的包描述符,最后向低层驱动程序返还最初的包描述符及其所描述的资源。
即使下边界面向无连接的中间层驱动程序支持ProtocolReceivePacket函数,它也提供ProtocolReceive函数。当低层驱动程序不释放包描述符所指示资源的所有权时,NDIS将调用ProtocolReceive函数,当这类情况出现时,中间层驱动程序必须复制所接收的数据到它自己的缓冲区中。如果中间层驱动程序同时也指示了带外数据,ProtocolReceive函数能够用 NDIS_GET_ORIGINAL_PACKET调用NdisGetReceivePacket,获取接收指示关联的带外数据。
对于下边界面向连接的中间层驱动程序,当低层驱动程序不释放包描述符所指示资源的所有权时,则将数据包的NDIS_PACKET_OOB_DATA的Status成员设为NDIS_STATUS_RESOURCES,然后驱动程序的ProtocolCoReceivePacket函数必须将接收到数据复制到自己的缓冲区中。
2.6.1.1 重用数据包
前面已经讲过,NdisSend为数据包描述符(中间层驱动程序提交的)返回 NDIS_STATUS_SUCCESS状态标志后,不是将包描述符返回给ProtocolSendComplete函数,就是将中间层驱动程序分配的数据包返回给MiniportReturnPacket函数。包描述符的所有权及其所描述的资源都将返回给中间层驱动程序。如果高层驱动程序提供缓冲区(链到返回包描述符),那么中间层驱动程序应当能够准确地向分配资源的驱动程序返回这些资源。
如果最初是中间层驱动程序分配了包描述符和链接的缓冲区,那么它就能够回收这些资源,并可以在接下来的发送和数据接收过程中使用这些资源。对中间层驱动程序来说,比起先释放这些资源,然后在需要时再进行重新分配,重新初始化并重用其所分配的包描述符、重用任何中间层驱动程序分配的链接缓冲区描述符和缓冲区,将是一种更为有效的方法。
中间层驱动程序通过调用NdisReinitializePacket函数对包描述符进行重新初始化,然而,中间层驱动程序必须首先确定已经调用 NdisUnchainBufferAtXxx移去了所有链接缓冲区及其缓冲描述符。因为NdisReinitializePacket将清除指向缓冲区链的成员,如果没有预先释放或存储链接缓冲区,该调用将导致内存泄漏。同样地,如果与包描述符相关的MediaSpecificInformation中包含OOB数据,在重新初始化该包描述符之前,也必须回收内存。

2.7 中间层驱动程序的限制

前面各章节已经描述了中间层驱动程序必须按序执行的各项操作,现总结如下:
当中间层驱动程序在MiniportInitialize函数中调用NdisMSetAttributesEx时,必须设定 NDIS_ATTRIBUTE_INTERMEDIATE_DRIVER标识,NDIS将仅仅通过该标识的当前值鉴别中间层驱动程序类型,并采取一定的措施确保延期操作不会导致死锁,例如向中间层驱动程序传送内部发送队列数据包。
中间层驱动程序至少应该用其分配的新数据包描述符代替内入数据包描述符,不管该数据包是要向下传递给低层驱动程序进行发送,还是要向上传递给高层驱动程序进行接收。其后,还必须用原始包描述符(最初与传递给中间层驱动程序的数据包相关联)替换其自己的包描述符,例如当完成一个发送或完成一个接收指示时。另外,中间层驱动程序还必须通过返回包描述符及其所指定的资源,及时地返还其从高层或低层驱动程序借入的资源。
特别地,中间层驱动程序必须遵循接下来的准则,该准则适用于所有非串行微端口驱动程序:
如果驱动程序的所有内部资源被中间层驱动程序发送函数和其他的MiniportXxx函数所共享,那么该资源必须通过自旋锁保护,这些函数包括 MiniportSend或MiniportSendPackets以及其他MiniportXxx函数,唯一的例外是MiniporReset函数,它由NDIS进行串行化。
对于非串行微端口驱动程序,中间层驱动程序将其每个绑定环境区域的共享资源(仅受自旋锁保护)组织为离散的专用接收区、专用发送区和共享区域,这样相对于那种过分保护那些分布没有规律的发送、接收和共享变量的驱动程序,将能够获得更好的性能。

2.8 中间层驱动程序接收数据

这一节将讨论下边界面向无连接以及下边界面向连接的中间层驱动程序如何进行数据接收。

2.8.1 下边界面向无连接的中间层驱动程序接收数据

低层面向无连接的NIC驱动程序可通过下面两种方式指示数据包:
NIC驱动程序调用非过滤相关的NdisMIndicateReceivePacket,传递指向数据包描述符的指针数组的指针,向高层驱动程序转让所指示包资源的所有权。当高层驱动程序处理完相应数据后将向NIC驱动程序返回那些包描述符及其所指向的资源。
NIC驱动程序调用过滤相关的NdisMXxxIndicateReceive函数,传递前视缓冲区指针及数据包的大小值。
下边界面向无连接的中间层驱动程序必须提供ProtocolReceive函数,另外,它也可包含ProtocolReceivePacket函数,这依赖于其具体的运行环境而定。
对于下边界面向无连接的中间层驱动程序来说, ProtocolReceive函数是必须提供的。该函数传递前视缓冲区指针,如果面向无连接中间层驱动程序检查完前视数据之后认为该数据包是高层驱动程序所需要的,那么必须将数据复制到已分配的数据包,该数据包将指示给高层驱动程序。如果前视缓冲区尺寸小于接收到的包大小,中间层驱动程序必须首先在 ProtocolReceive的环境中调用NdisTransferData复制接收数据包的其余部分。
为了让ProtocolReceive 尽可能快的执行,中间层驱动程序应该为此目的预分配包描述符、缓冲区及缓冲区描述符。ProtocolReceive被调用通常是因为低层驱动程序调用了 NdisMXxxIndicateReceive函数,然而,如果低层NIC驱动程序用NdisMIndicateReceivePacket函数指示接收数据包时,被指示的数据包描述符的OOB数据块状态设为NDIS_STATUS_RESOUCES,那么ProtocolReceive也可以被调用。因为那些NdisMIndicateReceivePacket指示的数据包被传递给ProtocolReceive函数,所以前视缓冲的大小总是与数据包的大小相等,因此中间层驱动程序不会为那些指示,调用NdisTransferData进行大小不相等包的处理。但是,如果低层NIC驱动程序也指示 OOB数据,那么中间层驱动程序在ProtocolReceive处理中必须以NIDS_GET_ORIGINAL_PACKET为参数调用 NdisGetReceivePacket找到这些信息。
对于下边界面向无连接的中间层驱动程序来说, ProtocolReceivePacket函数是可选的。ProtocolReceivePacket接收描述完整网络数据包的包描述符指针。如果低层面向无连接的NIC是DMA总线控制设备,驱动程序也必须相应的调用非过滤相关的NdisMIndicateReceivePacket函数指示接收数据包,并且,如果驱动程序绑定到低层NIC驱动程序,那么中间层驱动程序应提供ProtocolReceivePacket函数。另外,支持OOB数据的低层NIC驱动程序在大多数情况下,会在接收数据过程中向NdisMIndicateReceivePacket函数传递包描述符,以使中间层驱动程序能够访问与该描述符相关的OOB数据。
ProtocolReceivePacket对数据包进行检查,如果它认为该包是高层驱动程序所需要的,那么它能够通过返回一个非零值的方式保持该包的所有权。如果一个非零值被返回,中间层驱动程序接下来必须以包描述符指针为参数调用 NdisReturnPackets,而且,对于一个特定的包描述符,该函数被调用的次数应与接收指示时ProtocolReceivePacket函数返回的非零值的数目相等。
当中间层驱动程序按指定次数调用NdisReturnPackets之后,将向低层驱动程序转让最初指示接收数据的包描述符的所有权及相关的缓冲区,所以中间层驱动程序应尽可能快的调用NdisReturnPackets函数进行相应处理。
另一方面,如果中间层驱动程序从NdisReturnPackets中返回零值,这表示将立即释放数据包及相关资源。例如,如果中间层驱动程序复制指示数据到自己的缓冲区,并且在向高层驱动程序提交之前内部进行数据的相应处理,这种情况将会发生。

2.8.1.1 在中间层驱动程序中实现ProtocolReceivePacket处理程序
当低层NIC驱动程序通过调用NdisMIndicateReceivePacket函数指示可能包含OOB数据的包数组时,NDIS通常将以每一个包描述符为参数调用中间层驱动程序的ProtocolReceivePacket函数,并且在返回之前允许中间层驱动程序保持包描述符指定的资源,并对数据进行相关的处理。以包数组为参数调用NdisMIndicateReceivePacket函数的两类典型的NIC驱动程序如下:
管理能够接收多个网络数据包到缓冲环的DMA总线控制适配器的NIC驱动程序;
在与包描述符相关的NDIS_PACKET_OOB_DATA数据块中,向高层驱动程序提供包含介质相关信息的带外数据(如包优先级等)的NIC驱动程序。当然,这些驱动程序并不一定非要是DMA总线控制设备的驱动程序。
如果中间层驱动程序被绑定到NIC驱动程序,就像前面提及的,那么它应该提供ProtocolReceivePacket函数。这使得驱动程序可以完成接下的操作:
在每一个接收指示中,接收完整数据包;
调用NDIS宏,读取与包描述符相关的OOB数据,而不是调用NdisGetReceivePacket和NDIS_GET_ORIGINAL_PACKET接收和复制数据;
保持对内入数据包描述符的所有权,并通过这些包描述符对缓冲数据进行直接读访问,然后,在对每一个包描述符的处理中,可能要为客户程序制作该数据的多个副本;
通过NdisReturnPackets函数返回包描述符及其所描述资源,另外还有其他可能的包描述符。
即使中间层驱动程序提供了ProtocolReceivePacket处理程序,NIC驱动程序对NdisMIndicateReceivePacket函数的调用也可能导致对中间层驱动程序ProtocolReceive函数的调用。当NIC驱动程序调用 NdisMIndicateReceivePacket暂时释放了驱动程序分配资源的所有权之后,将依赖于这些包使用者调用 NdisReturnPackets及时向低层驱动程序返还该部分资源。换句话说,NIC驱动程序能够撇开接收资源运行,像NIC中的接收缓冲空间等。 NIC驱动程序通过向OOB数据块(与被传给NdisMIndicateReceivePacket的包数组中的包描述符相关联)写入 NDIS_STATUS_RESOURCES状态标识来完成该项功能,该状态指示的数据包将导致NDIS以该包及数组中相继的其他包为参数调用高层驱动程序的ProtocolReceive函数,这将强制中间层驱动程序复制包数据而不是获取包的所有权。
如果中间层驱动程序想要通过调用 ProtocolReceive函数来获取与包描述符关联的OOB数据,那么它必须用NDIS_GET_ORIGINAL_PACKET 调用NdisGetReceivePacket,复制特定的介质信息到中间层驱动程序所分配的缓冲区,另外,如果低层NIC驱动程序提供了时间戳,那么还必须复制TimeSent和TimeReceived信息。
2.8.1.2 在中间层驱动程序中实现ProtocolReceive处理程序
如果NIC驱动程序调用了NdisMXxxIndicate函数,那么驱动程序将总是调用ProtocolReceive函数来处理接收数据包。如果中间层驱动程序接受该数据包的话,ProtocolReceive必须以包描述符为参数调用NdisTransferData函数,复制前视缓冲区及包的其余部分到中间层驱动程序已分配的缓冲区。NdisTransferData必须在ProtocolReceive环境中调用,而且只能调用一次。中间层驱动程序应该设置拥有足够尺寸的链式缓冲区包描述符来保存所有的接收数据。当NdisTransferData返回之后,从低层NIC驱动程序接收来的数据将不再有用。
如果传给ProtocolReceive的数据是通过调用NdisMXxxIndicateReceive进行指示的,那么传给 ProtocolReceive函数的前视缓冲区尺寸将不会超过用OID_GEN_CURRENT_LOOKAHEAD调用NdisRequest返回的值。对于中间层驱动程序来说,所有的前视缓冲区中的数据都是只读的。如果对ProtocolReceive函数的调用是由于在调用 NdisMIndicateReceivePacket之前,低层NIC驱动程序把包数组中的一个或多个包状态设置为 NDIS_STATUS_RESOURCES,那么前视缓冲区的尺寸将总是等于整个网络数据包的大小,所以中间层驱动程序将不必再调用 NdisTransferData函数。
ProtocolReceive函数必须尽可能快的返回资源的控制权,因此在中间层驱动程序收到接收指示之前,应确保拥有可利用的包描述符、缓冲区及缓冲区描述符。如果中间层驱动程序检查前视数据后认为该包不是其要复制的那个,驱动程序应返回 NDIS_STATUS_NOT_ACCEPT标识。
在接收包被复制时,ProtocolReceive函数不能处理接收数据,因为这将严重影响系统性能以及低层NIC从网络中接收内入数据包的能力。作为替代,中间层驱动程序在以后的ProtocolReceiveComplete函数中对接收数据包进行处理,该函数在随后能够进行数据包后期处理时被调用。典型地,当低层NIC驱动程序已经指示了NIC驱动程序确定的所有数据包时或者在退出DPC 层接收句柄之前,以上操作将发生。中间层驱动程序必须对ProtocolReceive复制的数据包进行排队,以使 ProtocolReceiveComplete函数能够过它们进行后期处理。

2.8.1.3 下边界面向无连接中间层驱动程序接收OOB数据信息
如果接收到的网络数据包被指示给ProtocolReceive函数,那么驱动程序必须将接收数据复制到中间层驱动程序所提供的缓冲区。如果包描述符相关的数据包OOB数据中包含特定介质信息和(或)时间戳信息,中间层驱动程序将调用NdisGetReceivePacket 和NDIS_GET_ORIGINAL_PACKET获取介质信息以及TimeSent和TimeReceived时间戳(如果低层NIC驱动程序提供了那些信息)。
如果接收数据包被传给ProtocolReceivePacket函数,那么中间层驱动程序必须以下面的方式用NDIS宏保存与包关联的OOB数据信息:
用NDIS_GET_MEDIA_SPECIFIC_INFO 读取介质相关信息,用NDIS_SET_MEDIA_SPECIFIC_INFO写入介质相关信息;
用NDIS_GET_TIME_SENT读TimeSent信息,用NDIS_SET_TIME_TO_SEND写TimeSent信息;
用NDIS_GET_TIME_RECEIVED读TimeReceived信息。
TimeSent时间戳是远程节点NIC发送数据包的时间,如果可能的话,它将被低层NIC驱动程序获取并保存。TimeReceived时间戳是内入数据包被低层NIC驱动程序接收的时间。

2.8.2 下边界面向连接的中间层驱动程序接收数据

面向连接的NIC驱动程序通过调用NdisMIndicateReceivePacket指示数据包,传递参数为指向数据包描述符的指针数组的指针。如果中间层驱动程序基于NIC驱动程序之上,NDIS接下来将调用中间层驱动程序的ProtocolCoReceivePacket函数。
ProtocolReceivePacket 接收描述完整网络数据包的包描述符指针。ProtocolReceivePacket检查该数据包,如果认为该包是高层驱动程序需要的,将通过返回非零值的方式保持对该包的所有权。如果对该包返回了非零值,中间层驱动程序接着必须以相应包描述符指针为参数调用NdisReturnPackets函数,而且,对于一个特定的包描述符,该函数被调用的次数应与接收指示时ProtocolCoReceivePacket函数返回的非零值的个数相等。
当中间层驱动程序以指定次数调用NdisReturnPackets之后,将向低层驱动程序转让最初指示接收数据的包描述符的所有权及相关的缓冲区,所以中间层驱动程序应尽可能快地调用NdisReturnPackets函数进行相应处理。
另一方面,如果中间层驱动程序从NdisReturnPackets中返回零值,这表示将立即释放数据包及相关资源。例如,如果中间层驱动程序复制指示数据到自己的缓冲区,并且在向高层驱动程序提交之前内部进行数据的相应处理,该种情况将会发生。

2.8.2.1 在中间层驱动程序中实现ProtocolCoReceivePacket处理程序
当低层NIC驱动程序通过调用NdisMCoIndicateReceivePacket函数指示可能包含OOB数据的包数组时,NDIS以每一个包描述符为参数调用中间层驱动程序的ProtocolCoReceivePacket函数。为了获得相关包的OOB 数据块状态,ProtocolCoReceivePacket必须对每一个包描述符调用一次NDIS_GET_PACKET_STATUS宏。
如果NIC驱动程序在调用NdisMCoIndicateReceivePacket之前,将数据包描述符相关的OOB 数据块状态设为NDIS_ STATUS_SUCCESS,NIC驱动程序将暂时释放与该包描述符相关的资源的所有权。在这种情况下,NIC驱动程序将依赖于这些包的使用者及时返还该部分资源。换句话说,NIC驱动程序能够撇开接收资源运行,像NIC中的接收缓冲空间等。当撇开这些资源运行时,NIC驱动程序向与包描述符相关的 OOB数据块写入NDIS_STATUS_RESOURCES标识,该状态指示的数据包将强制中间层驱动程序的 ProtocolCoReceivePacket函数立即复制包数据,而不是保持NIC驱动程序分配的包资源。在这种情况下, ProtocolCoReceivePacket必须返回零。
如果低层NIC驱动程序没有将OOB数据块(与被传给 NdisMCoIndicateReceivePacket的包数组中的包描述符相关的)设置为NDIS_STATUS_RESOURCES,那么将允许中间层驱动程序保持该包描述符及其指定的资源,直到中间层驱动程序、高层协议及高层协议的客户程序处理完数据并返回包描述符为止。

2.8.2.2 在下边界面向连接的中间层驱动程序中接收OOB数据信息
中间层驱动程序必须以下面的方式用NDIS宏保存与包关联的OOB数据信息:
用NDIS_GET_MEDIA_SPECIFIC_INFO 读取介质相关信息,用NDIS_SET_MEDIA_SPECIFIC_INFO写入介质相关信息;
用NDIS_GET_TIME_SENT读TimeSent信息,用NDIS_SET_TIME_TO_SEND写TimeSent信息;
用NDIS_GET_TIME_RECEIVED读TimeReceived信息。
 TimeSent时间戳是远程节点NIC发送数据包的时间,如果可能的话,它将被低层NIC驱动程序获取并保存。TimeReceived时间戳是导入数据包被低层NIC驱动程序接收的时间。

2.8.3 向高层驱动程序指2.8.4 示接收数据包

在面向连接的中间层驱动程序处理完所接收的数据(可能已将其转化为高层驱动程序所要求的格式,并已将相关数据复制到链向中间层驱动程序分配的包描述符的缓冲区)之后,可以通过调用NdisMIndicateReceivePacket,将数据包指示给相邻的高层驱动程序,即使中间层驱动程序的微端口是面向无连接的。

2.9 通过中间层驱动程序传输数据包

在2.3.1 节已经提到,中间层驱动程序必须提供MiniportSendPackets函数,并通过NdisIMRegisterLayeredMiniport函数进行注册。如果中间层驱动程序是位于两个支持多包发送的NDIS驱动程序之间的,那么MiniportSendPackets函数能够导入包数组的转发。如果驱动程序下边界是面向无连接的,通过调用NdisSendPackets实现转发;如果驱动程序下边界是面向连接的,那么通过调用 NdisCoSendPackets实现转发。如果驱动程序是位于一次只能用NdisSend发一个数据包的传输器下的, MiniportSendPackets函数能够用NdisSend或Ndis(Co)SendPackets进行单一数据包传输(对系统性能没有任何负面影响)。
上述的中间层驱动程序不会成为性能的瓶颈。如果中间层驱动程序位于可向MiniportSendPackets发送包数组的传输器和一次只能处理一个包的微端口之间,不考虑低层微端口的性能,MiniportSendPackets可用NdisSendPackets发送接收到的包数组。NDIS先对数组中的数据包进行排队,然后当微端口可以接受发送请求时,将数据包独立的逐个发送给低层面向无连接的微端口的MiniportSend 函数,当然这些操作对中间层驱动程序是透明的。
因为对MiniportXxx的调用是由NDIS管理的,同步是有保证的,因此当高层驱动程序对低层驱动程序的转发请求产生时,不必像2.5节描述的那样进行NdisIMXxx的调用。
作为最起码的要求,必须用中间层驱动程序自己的包描述符代替每一个内入包描述符。驱动程序必须保留高层驱动程序的原始的描述符(和链接的缓冲区,如果它们被复制到了新的缓冲区的话),当发送完成、返回高层驱动程序之前,驱动程序应该返回原始的包描述符和用于发送包的数据缓冲区。关于如何分配包资源以及将信息从一个包复制到另一个包的更多的信息,请参阅2.5节。
MiniportSendPackets接收按序组织的包描述符数组,该顺序由 NdisSendPackets的调用者确定。在多数情况下,当将这些引入包数组传给低层NIC驱动程序时,中间层驱动程序应该维持该包描述符顺序,仅仅在将它们传给低层驱动程序之前,中间层驱动程序向内入数据包增加带外信息时才可能重排该引入包数组的顺序。
当向NdisSendPackets 传递包数组时,NDIS将一直保持包描述符指针的顺序。低层NIC驱动程序假定:传给MiniportSendPackets函数的包指针数组隐含包将以同样的顺序发送。
下边界面向无连接的中间层驱动程序能够以包描述符指针为参数调用NdisSend传输单个数据包,也可以通过调用NdisSendPackets并传递指向包描述符(驱动程序已经分配的)指针数组的指针来传输单个或多个数据包。下边界面向连接的中间层驱动程序能够通过调用NdisCoSendPackets 并传递指向包描述符指针数组的指针,传输单个或多个数据包。
通常情况下,下边界面向无连接的中间层驱动程序开发者,应该根据驱动程序的自身要求和低层面向无连接NIC驱动程序的已知特征,决定是使用NdisSend还是NdisSendPackets函数。下边界面向无连接的中间层驱动程序可以通过以NdisQueryInformation(RequeryType类型)和OID_GEN_MAXIMUM_SEND_PACKETS为参数调用 NdisRequest,获取低层驱动程序能够接受的发送包数组的最大包数量。如果低层驱动程序返回值‘1’或 NDIS_STATUS_NOT_SUPPORTED,那么中间层驱动程序可以选择使用NdisSend而不是NdisSendPackets函数。如果低层驱动程序返回大于‘1’的值,那么在发送包数组时使用NdisSendPackets函数会使两种驱动程序的性能都变得更好。
如果低层面向无连接的NIC驱动程序返回大于‘1’的值,那么下边界面向无连接的中间层驱动程序也应该提供MiniportSendPackets函数。另外,中间层驱动程序应该用与低层NIC驱动程序相等大小的值响应OID_GEN_MAXIMUM_SEND_PACKETS查询。
如果OOB数据在中间层驱动程序和NIC驱动程序之间传递,两个发送函数都可能被调用,因为在任何一种情况下,低层驱动程序都能使用NDIS提供的宏读取与包描述符相关的OOB数据。
如果中间层驱动程序发送超出低层NIC驱动程序内部资源承受能力的数据包:
非串行或面向连接的NIC驱动程序将在其内部队列中对超量的数据包进行排队,在条件允许的时候再发送它们;
串行NIC驱动程序可以对超量的数据包在内部队列中进行排队,在条件允许的时候再发送它们,也可以用NDIS_STATUS_RESOURCE状态返回超量数据包。在后一种情况下,NDIS将在内部队列中保存那些数据包并在NIC驱动程序下一次调用NdisMSendResourceAvailable或 NdisMSendComplete时,重新提交这些数据包。
当下边界面向无连接的中间层驱动程序从MiniportSend调用 NdisSend函数时,将以同步或异步方式转让包描述符的所有权及其所描述的所有资源(直到发送操作完成为止)。如果NdisSend返回的状态不是 NDIS_STATUS_PENDING,则调用是以同步方式完成的,并且在NdisSend返回时包资源的所有权就将返还给中间层驱动程序。中间层驱动程序应该返还所有高层驱动程序分配的发送资源,并传送NdisSend调用的结果作为MiniportSend的返回状态。
如果NdisSend 返回的状态是NDIS_STATUS_PENDING,当接下来发送操作完成的时候,发送操作的最终状态和包描述符将返回给 ProtocolSendComplete。中间层驱动程序应该从ProtocolSendComplete函数中调用NdisSendComplete 传送发送状态给相邻的高层驱动程序。
当下边界面向无连接的中间层驱动程序通过调用NdisSendPackets发送一个或多个数据包时,或者当下边界面向连接的中间层驱动程序通过调用NdisCoSendPackets发送一个或多个数据包时,发送操作默认是异步的。直到每一个包描述符和该包发送的最终状态都返回给ProtocolCoSendComplete之后,呼叫器才释放这些包描述符的所有权。 ProtocolCoSendComplete必须像前一段描述的那样,向相邻的高层驱动程序传送每一个包的发送状态。
作为一个结论,如果中间层驱动程序用NdisSendPackets发送数组中的数据包,那么在NdisSendPackets返回时,它不能企图读取相关的OOB数据块的 Status成员。该成员被NDIS用于跟踪转换中的发送请求的进程,它是易变的。中间层驱动程序仅仅能通过检查传送给Protocol(Co) SendComplete函数的Status参数来获取传送请求的状态。
如果在发送之前,中间层驱动程序通过重组从上层驱动程序接收的数据包,请求不同优先级的包数组传送,那么应将最高优先级的数据包放在数组的开始位置。当将这些数据包传给低层NIC驱动程序的MiniportSend或 Miniport(Co)SendPackets函数时,NDIS将保持该顺序,即使在内部要对一些数据包进行排队。对于每一个Ndis(Co) SendPackets调用,NDIS将维持该顺序。
NDIS永远不会企图对与包描述符相关的OOB数据块进行排队或检查。除非中间层驱动程序对NIC驱动程序处理包优先级的方式有特别的了解,否则,应假定NIC驱动程序按接收到的顺序发送数据包,保持接收时的顺序。
NDIS_PACKET 类型描述符的私有(Private)成员的结构对中间层驱动程序是不透明的,并且允许使用NDIS提供的宏或函数对其进行读访问,在某些情况下,也可进行写访问。例如,在发送一个数据包之前,中间层驱动程序可以调用NdisSetPacketFlags设置描述符的NDIS私有部分的中间判定标识。这些标识并不是NDIS定义的,而是协议和低层NIC驱动程序合作定义的。

2.9.1 传递介质相关信息

中间层驱动程序可以通过与每一个NDIS_PACKET描述符相关的OOB数据块,传送更多的介质相关信息。以下是OOB数据块的定义:
typedef struct _ NDIS_PACKET_OOB_DATA{
  union{
   ULONGLONG TimeToSend;
   ULONGLONG TimeSend;
  };
  ULONGLONG   TimeReceived;
  UINT   HeaderSize;
  UINT   SizeMediaSpecificInfo;
  PVOID   MediaSpecificInformation;
  NDIS_STATUS  Status;
 } NDIS_PACKET_OOB_DATA, * PNDIS_PACKET_OOB_DATA;
缓冲区中的单个记录结构MediaSpecificInformation定义如下:
typedef struct MediaSpecificInformation{
  UINT   NextEntryOffset;
  NDIS_CLASS_ID ClassId;
  UINT   Size;
  UCHAR  ClassInformation[1];
}MEDIA_SPECIFIC_INFORMATION;
ClassId 成员是NDIS定义的枚举变量(ClassInformation[1]中发现的信息类型)。目前,支持win32的微软操作系统中为介质提供了四个 Class Ids:NdisClass802_3Priority、NdisClassWirelessWanMbxMailbox、 NdisClassIrdaPacketInfo 和NdisClassAtmAALInfo。关于更详细的信息请参阅在线“the Network Drivers Reference”。
如果中间层驱动程序知道发送数据包的低层NIC驱动程序要使用OOB数据,它就能够设定相应的OOB结构成员。例如,中间层驱动程序能够完成以下操作:
通过使用NDIS_SET_PACKET_TIME_TO_SEND宏设置TimeToSend成员,请求数据包在特定的时间发送。该宏在系统时间单元中传递请求时间。驱动程序可以调用NdisGetCurrentSystemTime获取系统时间,可用该值计算请求发送时间。
可以使用 NDIS_PACKET_SET_MEDIA_SPECIFIC_INFO宏在MediaSpecificInformation中传递呼叫器缓冲区中的介质相关信息。例如,如果中间层驱动程序绑定到要求优先级的低层NIC,那么可以设置MediaSpecificInformation结构的 ClassId成员为NdisClass802_3Priority,并通过ClassInformation传递优先级相关信息以及该信息的字符大小值。

2.10 处理中间层驱动程序的PnP事件和PM事件

中间层驱动程序必须能够处理即插即用(PnP)事件和电源管理事件(PM)。特别地:
中间层驱动程序必须在传给NdisMSetAttributeEx的AttributeFlags参数中设置标识,参阅2.4.2节;
中间层驱动程序的微端口部分必须处理OID_PNP_XXX请求;
中间层驱动程序的协议部分必须传送准确的OID